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ABSTRACT

This paper introduces a new stabilized finite element method based on FIC
(Oñate and García, 2001; Oñate et al, 2004; García et al, 2005) and ALE tech-
niques (Hirt et al, 1974), specially developed for analysis of naval hydrodynam-
ics problems. The main innovation of this method is the application of domain
decomposition concept in the statement of the problem, in order to increase
accuracy in the capture of free surface as well as in the resolution of governing
equations in the interface between the two fluids. Free surface capturing is based
on the solution of a level set equation, while Navier Stokes equations are solved
using an iterative monolithic predictor-corrector algorithm (Codina, 2001),
where the correction step is based on the imposition of the divergence free con-
dition in the velocity field by means of the solution of a scalar equation for the
pressure. In this paper an application of the new methodology to the simulation
of roll movement in a real geometry of a high speed craft is presented.

Key words: Finite Element Method (FEM), Free Surface, Naval Hydrody-
namics, Navier Stokes, Level Set, Domain Decomposition.

STATEMENT OF THE PROBLEM

The velocity and pressure fields of two incompressible and immiscible fluids
moving in the domain Ω ⊂ Rd (d=2,3) can be described by the incompressible
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Navier Stokes equations for multiphase flows, also known as non-homogeneus
incompressible Navier Stokes equations (Lions, 1996):

(1)

Where 1 ≤ i , ≤ j d , ρ is the fluid density field, ui is the ith component of the
velocity field u in the global reference system xi, p is the pressure field and τ is the
viscous stress tensor defined by:

(2)

where µ is the dynamic viscosity.

Let Ω1={x∈Ω|x∈Fluid1} be the part of the domain Ω occupied by the fluid
number 1 and let Ω2={x∈Ω|x∈Fluid2} be the part of the domain Ω occupied by
fluid number 2. Therefore  Ω1, Ω2 are two disjoint subdomains of Ω. Then

(3)

The system of equations (1) must be completed with the necessary initial and
boundary conditions, as shown below.

It is usual in the literature to consider that the first equation of the system (1)
is equivalent to impose a divergence free velocity field (the third equation in (1)),
since the density is taken as a constant. However, in the case of multiphase incom-
pressible flows, density can not be consider constant in Ω ×(0,Τ). Actually, it is pos-
sible to define ρ,µ fields as follows:
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Let  ψ: Ω ×(0,Τ) → RR be a function, in below named Level Set function,
defined as follows:

(5)

where  d (x,t) is the distance to the interface between the two fluids, denoted by Γ,
of the point  x in the time instant t. From definition (5) it is trivially obtained that:

(6)

Since the level set 0 identify the free surface between the two fluids, the fol-
lowing relations can be obtained:

(7)

where n is the normal vector to the interface Γ, oriented from fluid 1 to fluid
2 and κ is the curvature of the free surface. In order to obtain relations (7) it has
been assumed that function  ψ defined in (5) accomplish (Osher and Sethian, 1988;
Osher and Fedkiw, 2001; Fedkiw et al, 1999):

(8)

Therefore, it is possible to re-write definition (4) as follows:

(9)

Let us write the density fields in terms of the level set function  ψ as

(10)

Then, density derivatives can be written as 
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Inserting relation (11) in the first equation of the system (1) gives

(12)

What gives as a result that the multiphase Navier Stokes problem (1) are equivalent
to solve the following system of equations:

(13)

coupled with the equation 

(14)

Equation (14) defines the transport of the level set function due to the veloci-
ty field obtained by solving (13).

As a conclusion, the free surface capturing problem can be described by equa-
tions (13) and (14). In this formulation, the interface between the two fluids is
defined by the level set 0 of ψ.

It is possible to demonstrate, assuming the variables of the problem as suffi-
ciently smooth, that the system (1) or equivalently the system given by equations
(13) and (14) has a unique global solution (Lions, 1996).

Denoting by over-bar the prescribed values, the boundary conditions of prob-
lem (13) y (14) to be considered are

(15)

Where the boundary ∂Ω of the domain Ω has been split in three disjoint sets:
Γu, Γp  where the Dirichlet and Neumann boundary conditions are imposed and  Γτ
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where the Robin conditions for the velocity are set. In above vectors  g, s span the
space tangent to Γτ . In a similar way, the boundary conditions for (14) are defined

(16)

Finally, initial conditions for the problem to be considered are

(17)

where                                             defines the initial position of the free surface

between the two fluids.

FIC STABILIZED PROBLEM

It is well known that the finite element (FEM) solution of the incompressible
Navier-Stokes equations may suffer from numerical instabilities from two main
sources. The first is due to the advective character of the equations which induces
oscillations for high values of the velocity. The second source has to do with the
mixed character of the equations which limits the stability of the solution to the sat-
isfaction of the well known inf-sup condition. The stabilization technique used in
this work is based on the FIC (Finite Incremental Calculus) method presented in
(Oñate and García, 2001; Oñate et al, 2004; García et al, 2005; Oñate et al, 2006).

The stabilized FIC form of the governing differential equations (13) and (14)
can be written as

(18)

The boundary conditions for the stabilized problem are written as
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The underlined terms in equations (18) and (19) introduce the necessary sta-
bilization for the numerical solution of the Navier Stokes problem (Oñate and Gar-
cía, 2001; Oñate et al, 2004; Oñate et al, 2006).

Note that terms rmi , rd y rψ , y  denote the residual of equations (13) and (14),
this way, as example:

(20)

The characteristic length distances hj represent the dimensions of the finite
domain where balance of mass and momentum is enforced. Details on obtaining the
FIC stabilized equations and recommendation for the calculation of the stabiliza-
tion terms can be find in (Oñate and García, 2001; Oñate et al, 2004; Oñate et al,
2006).

OVERLAPPING DOMAIN DECOMPOSITION

Let us consider next domain decomposition of domain Ω into three disjoint
sub domains Ω3, Ω4, and Ω5 in such a way that , .

Where are the elements of the finite element partition , such as

and are the elements of the finite element partition such as

. The geometrical domain decomposition is completed with

(21)

From this partition let us define two overlapping domains y (see Figure 1):
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Figure 1. Geometric Decomposition of
analysis Domain.
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iteration i –1 at time tn+1, find and in
time tn+1, by solving next discrete variational problem:

(23)

(24)

For i =1,2,3,... until convergence, that is to say, until

(25)

Where tolu y tolp are fixed tolerances.
It is possible to demonstrate that problem (23)-(24) is equivalent to (13)-(14)

(Quarteroni and Valli, 1999).
Additionally, it is important to note that the proposed domain decomposition
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to take into account effects such as the surface tension in the interface, defined by

(26)

where [.]Γ notes the pressure jump in the interface and is the surface tension con-
stant of the problem.

The authors have proposed to christen to this new methodology, as a combi-
nation of domain decomposition and level set techniques: ODDLS (Overlapping
Domain Decomposition Level Set).

ALE FORMULATION

It is of interest in many applications to consider the movement of some parts
of the analysis domain. In the mobile parts of the domain is more convenient to use
a Lagrangean formulation of the equations and update the spatial discretization
every time step. While in the fixed areas of the analysis domain, it is more efficient
to use the standard Eulerian formulation. This type of mixed formulation is called
“Arbitrary Lagrangian-Eulerian” (ALE) technique (Hirt et al, 1974).

It is possible to obtain a more general formulation of equations (13) and (14)
considering next definition of the material derivatives:

(27)
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ticle and the global reference of the problem. This way, it is possible to obtain the
ALE formulation of the residuals in (18) as follows
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75, respectively. It is important for these cases to adapt the ODDLS technique to
solve monophase problems, reducing the computational cost and capturing the free
surface with the necessary accuracy and maintaining the advantages of the proposed
method. In this case, the computational domain is reduced to the nodes in the water
plus those in the air being connected to the water interface. The later nodes are used
to impose the pressure and velocity boundary conditions on the interface.

At a computational level, this modification is equivalent to solve prob-
lem(23), imposing (29) by means of a local least squares technique.

The proposed monophase adaptation of the ODDLS method has been used
in the application example shown in the next section.

CASE OF STUDY

The example of application of the presented technique is the analysis of a
high speed boat. The general characteristics of this boat appear in the following
table:

Overall length 11.2 m
Molded beam 2.5 m
Displacement 4.9 t
Design velocity 40 kn

The geometry of the boat has
been defined by means of
NURBS patches by the design-
er, and later exported to GiD-
Tdyn software (GiD; Tdyn),
where we insert   the necessary
data for the analyses and mesh
generation. The used geometry
is displayed in Figure 2. In the
mentioned program a computa-
tional domain of 45,8 m x  17.6
m x 11.5 m was generated. The
referred volume was subdivided
in two zones, an internal paral-
lelepiped around the boat, of
dimensions 32,8 m  x 8,8 m x

6,5 m  and an external domain, corresponding to the rest of the volume of analysis.
These zones were used for the adaptation of the sizes of elements of the mesh to the
analysis requirements. The objectives of this adaptation were two:

Reduce the element size in the neighbor zone of the boat to be able to cap-
ture the fluids dynamics phenomena of interest.

J. GARCÍA ESPINOSA AND A. VALLS TOMAS

JOURNAL OF MARITIME RESEARCH 35

Figure 2. CAD Geometry of The boat Hull.

art. 3.qxp  13/04/2007  10:23  PÆgina 35



Create an external zone where the
generated waves by the movement of
the boat will be damped, reducing
therefore the possible effects of bounces
in the boundaries of the analysis
domain.

This way a nonstructured mesh was
generated in the zone near the boat
with element size that vary between
0.05 m and.85 m. The resulting mesh of
this process contains 420 000 linear
tetrahedra, and it was used for all the

simulations made in this work. The simulations have been made on salt water using
real scale, ignoring the effect of the air in the resolution of the equations of the
dynamics of fluids. Each one of the analyses consists of the following phases:

Initial phase: corresponds to the start-up of the simulation, beginning from
rest point and arriving to towing speed. This phase is carried out with the ship fixed
during 0.5 s of real time.

Towing phase: during 3,5 s of real time an analysis of the towing of the boat is
carried out, leaving the boat free  to  trim and sink.

Rolling phase: during 11.5 s of physical time a forced roll of the boat in dif-
ferent conditions is carried out. Three different towing speeds have been analyzed:
20, 30 and 40 kn.

In the follow-
ing table a compara-
tive between the
steady state situation
obtained in the pres-
ent work during the
phase of towing and
available experimen-
tal data for a scale
model is presented:

Trim Angle (º)

Velocity (kn) Experimental (model scale) This Work (Full scale)

20 8.3 7.4
30 5.8 6.3
40 4.1 4.5

ODD LEVEL SET: A NEW METHOD FOR SIMULATION OF FREE SURFACE PROBLEMS
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Figure 3. View of fluid Flow in the Stern (V=30 kn).

Figure 4. Lateral view of the free surface around the boat (V = 30 kn).
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Figure 3 shows the flow in the stern of the ship for the case of towing speed of
30 kn, whereas Figure 4 displays a lateral view of the free surface around the boat.

The rolling analyses were carried out for different amplitudes and a for a period
near the resonance point of the movement, that has been estimated in T = 1.3 s.

The studied rolling amplitudes are 2, 5 and 10º for each towing speed. In the
appendix there are different graphical results from the analyses carried out. Figure 5
shows results of the free surface for case V = 30 kn θ = 10º during a period of the
forced balance of the boat. On the other hand, Figure 6 displays different images of
the results of the speed field at a dimensionless distance y+ = 65 of the hull, through-
out a forced roll period of the boat (case V =40kn θ = 10º). Where y+= y·ρ·uτ/µ,
being y the distance from the hull in the normal direction to the surface. And uτ the
traction in the wall. Finally Figure 7 shows to different mesh cuts from the solution
of the equation of level Set in the analysis  case corresponding to V = 40 kn  θ = 10º.
In this image it is possible to appreciate how the method is able to capture the inter-
face between air and water with sufficient accuracy, even with large elements.

The numerical results of these tests are presented in the following tables. In
them the amplitude value of the moments induced by pressure and viscous effects
are presented:

J. GARCÍA ESPINOSA AND A. VALLS TOMAS
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Figure 5. different view of the analysis results during a forced  rolling of the boat (V = 30kn, θ = 10º).

Amplitude of forced roll 2º

Velocity (kn) Viscous force moment (N·m) Pressure moment (N·m)

20 110 2.775
30 170 4.200
40 205 4.880
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The results of the analyses show a clear influence of the speed in the
moments that the fluid exerts on the boat.

From the two calculated components of the moment, the one corresponding
to the integration of the pressure is practically in the same phase as the movement,
being this contribution of the viscous efforts the unique one that causes the damping
effect to the balance movement. As has already been seen in similar studies (García
et al, 2005) the increase of the effect of the viscous forces is responsible for the
increase of the damping effect of roll movement with the increase of boat speed. On
other hand, it is important to note that moments due to pressures has a significant
component due to dynamic effects. This is an expectable result due to the high
velocity developed by the boat.

CONCLUSIONS

The present work shows a new methodology for the analysis of problems
with free surface denominated ODD Level Set. This methodology is based on
application of domain decomposition techniques and allows increasing the accuracy
of the free surface capturing (level set equation) as well as solving governing equa-

ODD LEVEL SET: A NEW METHOD FOR SIMULATION OF FREE SURFACE PROBLEMS
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Amplitude of forced roll 5º

Velocity (kn) Viscous force moment (N·m) Pressure moment (N·m)

20 275 6.500
30 450 9.850
40 550 13.000

Amplitude of forced roll 10º

Velocity (kn) Viscous force moment (N·m) Pressure moment (N·m)

20 280 7.300
30 705 15.600
40 1.235 25.000

Figure 6. View of Level Set solution over the analysis mesh (level set) (V = 40 kn, θ = 10º) 
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tions in the interface between water and air. The greater accuracy in the solution of
the interface between the fluids allows the use of non-structured meshes, as well as
the use of larger elements in the free surface. In addition, the method can be simpli-
fied by solving only one of the two fluids, which allows increasing the efficiency in
those cases where the effect of one of the fluids can be neglected.

The proposed methodology has been integrated with an ALE algorithm for
the treatment of the ship movement and has been applied in the analysis of the tow-
ing test and forced roll of a high speed boat. The satisfactory result of the qualitative
analysis of the application study shows the capability of the presented methodology
for studying this kind of problems.
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