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ABSTRACT

This article proposes an expert guidance system for Unmanned Aerial Vehicles
(UAVs) for marine rescue missions. The difficulty of the problem, due to the time
constraints that the mission has to fulfil are lightened by the use of Artificial Neu-
ronal Networks, taking advantage of their high adaptability, low memory require-
ments, real time response capability, and extrapolation properties. We use them to
implement two different types of behaviours for the two main phases of the task:
in prediction mode they are responsible of calculating the displacement that the
castaways suffer due to the sea and wind currents and in sensing mode they are in
charge of guiding the UAV while it tracks already found shipwrecked and search
for new ones. To illustrate the successful behaviour of the expert system embed-
ded in a simulator, some results are shown in the final section. 

Key words: Castaway, Shipwreck, Artificial Neural Network, Unmanned Aerial
Vehicle, Search and rescue.

INTRODUCTION

The technological advances in unmanned vehicles are being exploited by a growing
number of projects of the research areas of control, cooperation and artificial intelli-
gence (ASF, BERK, CALT-Mur, MAGIC, MICA, MIT). The employment of these
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vehicles is extending to multiple civil and military fields too, such as surveillance
tasks (Houden, 2008) or reconnaissance missions (Tian, 2006; Besada-Portas 2010). 

The demanding time constraints of sea rescue tasks can benefit of the use of
these types of vehicles: when a ship wrecks, the time elapsed between the shipwreck,
its detection by a rescue centre, and the departure and arrival of a rescue vessel, can’t
be too long. Finding the castaways quickly is primordial but hard: as time passes the
shipwrecked are spread by the sea winds and currents along a wide area, rendering
their location difficult. The complementary capacities of Unmanned Air Vehicles
(UAVs) and Unmanned Surface Vessels (USVs) can facilitate the rescue task: quickly
UAVs can be sent to locate the castaways and precise USVs to perform their rescu-
ing. This paper focuses on the UAV search and tracking side of the sea rescue task.

The capabilities of the UAVs to perform rescue or tracking tasks in designated
areas have already been used in other problems (Kamrani and Ayani, 2009; Rubio et
al., 2004). In our research, these capabilities are developed by an expert system that is
in charge of obtaining the high level commands that will properly guide the UAV
towards and inside the rescue area. We assume that the UAV already incorporates a
low level stabilization and control system that interprets the high level commands.
That is, the high level expert system guides the vehicle, while the low level stabiliza-
tion and control system drives it. Finally, the time restrictions of the task and the
resource constraints of the onboard UAV CPU have to be considered too in the
expert system design. 

In order to achieve all the necessary requirements, we have designed a guidance ex-
pert system based on Artificial Neural Networks (ANNs), which are parallel comput-
ing structures for modelling and learning nonlinear complex behaviours (Haykin, 1999;
Patterson, 1996). Their high adaptability, low memory requirements, real time re-
sponse capability, and easy integrability are also appealing. Our expert system incor-
porates two types of ANNs: ones to predict the position of the castaways before they
are located by the UAV and other to guide the UAV after finding the first shipwrecked.
We also learn their behaviours: the prediction ANN parameters are adapted to the sea
rescue environment while the sensing ANN behaviour extrapolates the knowledge of
an expert to different situations. So, our ANN based guidance expert system adapts to
the rescue task. Besides it doesn’t require much memory or CPU resources.

The rest of this paper is organized as follows. Section 2 describes and formalizes
the sea rescue problem. Section 3 presents the UAV expert system, starting with their
differing elements and ending with the whole system. Finally, section 4 shows the
results of using the designed expert system in two different simulated rescue tasks.

PROBLEM DESCRIPTION

Searching and tracking shipwrecked people or items with an UAV is a difficult task
due to the dynamics and uncertain behaviour associated to the different elements of
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the system. On one hand, the shipwrecked elements are stochastically moved by the
sea and wind currents. On the other, the UAV only collects noisy measurements of
the shipwrecked positions that are inside the camera field of view or that have been
beaconed by the UAV when first detected. Then, while no shipwrecked are observed,
the UAV needs to find them using a predictive model. Once shipwrecked are found
and beaconed, it can track them while searching the rest. In both cases, the search is
carried out by moving the UAV, whose position is deterministically controlled by
high level commands. Hence, the rescue task consists on selecting the commands
that let the UAV efficiently find the shipwrecked. In the remaining parts of this sec-
tion we present the notation and the model of the problem used throughout the
paper.

Notation

In this paper, a capital italic letter (V) represents a unidimensional variable, a bold-
face capital italic letter (V)- a multidimensional one, and a lowercase roman letter (f)
a function. Sub-indexes are used to distinguish variables: t associates the variable to
the t-th timestep and i – to any of its possible realizations. Super-indexes are used to
distinguish the elements of multidimensional variables: x and y refer them to Carte-
sian coordinates, r and θ- to polar coordinates. For example, Mt,i represents the i-th
variable labelled M at time step t and  Mx

t,i stands for its corresponding x coordinate.
Finally, dir(ΔX,ΔY) is the function that calculates the orientation of the vector [ΔX,
ΔY] and IsTrue(BooleanExpression) the indicator function that returns 1 when the
Boolean expression is true and 0 otherwise.

General problem Formulation

To model the behaviour of the problem, we assume that the number of elements need-
ing rescue is fixed and equal to N, and consider the following variables: Ut to represent
the position of the UAV; At, the high level control command applied to the UAV; Mt,i,
the real position of the i-th shipwrecked; Dt,i, the moment the i-th shipwrecked element
was first detected (i.e.: never, just, previously); and St,i, the measurement obtained by
the UAV for the i-th detected shipwrecked. Moreover, Ut = [Ux

t , Uy
t , Uθ

t ], Mt,i =[Mx
t,i , My

t,i]
and St,i = [Sx

t,i , Sy
t,i]. Finally, the control command  At = [Ax

t , Ay
t  ] indicates the next way-

point that the UAV has to be driven to by the low level onboard UAV controller. 
The relationships among all these variables are schematized in figure 1, where vari-

ables in circles belong to the hidden state space, variables in squares are observations,
and an arrow V → W means that the value of W depends on the value of V. In other
words, figure 1 represents that Ut+1= f(Ut, At+1), Mt+1,i = g(Mt,i), Dt+1,i = h(Dt,i, Mt+1,i,
Ut+1), and St+1,i = q(Dt+1,i, Mt+1,i). Function f deterministically models the UAV evolu-
tion, and so it depends on the UAV characteristics. Function g stochastically models
the shipwrecked evolution, and so the sea wind and currents that move the ship-
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wrecked elements are included in its
definition. The remaining two func-
tions are related with the beacon and
camera measurement systems.
Function h models the evolution of
Dt,i: from never detected to just de-
tected when the camera first ob-
serves the object falling inside its
field of view, and from just detected
to previously detected in the follow-
ing time step. When the ship-
wrecked is just detected, function q
behaves as the noisy camera meas-
urement model, and hereafter, as the
noisy beacon measurement model.

At each time step, the high level
command At applied to the UAV
must increment the chances of
finding new never detected shipwrecked. Then, At is calculated in closed loop to be
able to take into account the current observations and past history. 

The way to proceed to obtain At depends on the available information. Before the
first shipwrecked is located by the UAV camera system, the UAV can only use the pre-
dicted Mt,i and the UAV position Ut to decide where to go. Once the position of any item
is detected, i.e. when the UAV starts collecting St,i, the high level command At can di-
rectly depend on the shipwrecked measured locations. In short: before finding cast-
aways, At = r(Ut-1, {Mt,i|i = 1:N}); and afterwards, At = c (Ut-1, {Sk,l|Dk,l ≠ never, k ≤ t}),
where the functions r and c represent the high level controllers for the prediction and
sensing working modes respectively. 

The objective of our research is to find efficient implementations for both high
level controllers that let the UAV robustly respond to the evolution of Mt,i or St,i. 

UAV CONTROLLERS BASED ON ANNs

In the following two sections, we present the controllers used in each of the working
modes. They fulfil the efficiency and robustness requirements by means of employ-
ing properly trained ANNs. Afterward, the whole system, that also includes a manager
responsible of selecting the correct controller and handling exceptions, is described.

Prediction mode
Before the first castaway is located by the UAV, the UAV can only be driven towards
the shipwrecked positions Mt,i. However, as Mt,i belongs to the system state and not
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to the observations, Mt,i has to be calculated too. That is, when the controller is work-
ing in this mode, not only does the expert system have to implement the controller 
At = r(Ut-1, {Mt,i|i = 1:N}), but also a module, called predictor hereafter, responsible
for obtaining all Mt,i with the selected Mt+1,i = g(Mt,i) and the initial location M0,i
where the vessel sunk. Figure 2 shows the connection between both subsystems. 

Since the efficiency of the
complete prediction controller
(which obtains Mt,i and At)
depends on both functions g
and r, special care should be
taken when selecting them.

Prediction model Mt+1,i=g(Mt,i)

The prediction g models
usually available in rescue cen-
tres, such as the Mercator Ocean
(MERCATOR) or the Spanish
Project ESEOO (Álvarez, 2005),
are too complex and slow for the
UAV CPU. Online predictions
based on wind and current maps, generated with numerical models such as HIRLAM
(High Resolution Limited Area Model, Gómez and Carretero, 2005) or CEPPM
(Medium Term Prediction European Center), are not fast enough either because they
have to generate dense maps to obtain the wind and current values at every Mt,i, and pre-
dict Mt+1,i based on the previous Mt,i. Therefore we opt to implement a prediction model
g with an ANN trained offline at the rescue centre before the UAV starts its mission. 

To develop our predictor, we implement the function g as the incremental model
presented in equation (1), where function p is a feedforward ANN.

(1)

This incremental implementation of g makes Mt,i =[Mx
t,i , My

t,i ] the natural input
for the ANN, and Mt+1,i –Mt,i =[Mx

t+1,i–Mx
t,i , My

t+1,i – My
t,i ]=[ΔMx

t+1,i, ΔMy
t+1,i ] = ΔMt+1,i

its output. Then, since ΔMt+1,i = p(Mt,i), the ANN is forced to learn the displacement
caused to the shipwrecked by the local conditions on each point of the environment.

The pairs of input Mt,i – output ΔMt+1,i used to train the ANN are generated with
the numerical predictor g used in the rescue centre. As function g returns Mt+1,i and
the ANN output is ΔMt+1,i, this last value has to be calculated to generate the training
data pairs. The training data are used to update the weights of the ANN with the
Bayesian Regulation Backpropagation algorithm. This algorithm calculates the ANN

pt+1,i t,i t,iM M M  
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parameters, using a method that combines the squared errors and ANN weights in
such a way that a well generalizing ANN is usually obtained (MacKay D., 1992). The
training phase takes into account the error between the ΔMt+1,i obtained with the
ANN and the ΔMt+1,i obtained after subtracting Mt,i from the output Mt+1,i of the
numerical predictor g. Figure 3 summarizes the complete training task. 

The numerical predictor g used
in our experiments to train the ANN
p predicts the next shipwrecked posi-
tions using a grid map of forces
caused by the sea winds and currents.
The trained ANN generalizes the
effects of those winds and currents
over the shipwrecked on the points
defined by the grid map. 

The onboard predictor g, repre-
sented in figure 4, obtains Mt+1,i from
Mt,i using the trained ANN p to gen-
erate the displacement ΔMt+1,i and an
additive Gaussian random variable
Vt+1,i , with zero mean and covariance
Q, that models little disturbances not
included in the numerical predictor. 

The simplicity of the onboard g
depends on the properties of the
ANN. To speed up these operations,

we successfully use a feedforward ANN with two inputs [Mx
t,i , My

t,i ], two outputs
[ΔMx

t+1,i ,ΔMy
t+1,i ], and three layers with only two neurons in the input layer, four in

the hidden and two in the output. Its training time is small too: a convergent ANN is
usually available in only 5 minutes using a Pentium Core Duo. Therefore, the offline
training step might be carried out while the UAV gets ready for its mission.

Finally, it is worth mentioning that there are other types of ANNs, such as the
recurrent ones, that are directly used to predict a sequence (at different time steps) of
outputs given the initial conditions (Hontoria et. al, 2001). Our prediction ANN is
different (it learns the displacement between two successive points of the sequence),
facilitates the learning task, and usually reduces the accumulated error at the end of
the sequence. 

Controller  At = r(Ut-1, {Mt,i|i = 1:N})

The function that obtains the high level command At based on the predicted
positions of the shipwrecked elements Mt,i needs to conduct the UAV towards them
as quickly as possible to let the UAV visual system find the first shipwrecked. 
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An efficient way to achieve an appropriated behaviour consists on generating the
high level command that makes the UAV move towards the mean value of Mt,i. So,
the controller function r implements the following equation:

(2)

Note that with this way of proceeding the UAV doesn’t necessary arrives to the
mean value of Mt,i in the following time step, because the high level command only
identifies the next waypoint that the UAV has to visit. Besides, the trajectory fol-
lowed by the UAV to reach the waypoint depends on the UAV and low level con-
troller properties. 

In spite of the simplicity of this controller, the UAV can usually intercept the
mean predicted trajectory of the shipwrecked by redirecting the UAV while
approaching the castaways. However, when the shipwrecked predicted positions are
not correct (due to a significant discrepancy on the real and predicted environmental
conditions), the UAV can only verify that there are no castaways in the vicinity of the
mean expected area and notify it to the rescue centre.

Sensing Mode

When the vessel wrecks near the rescue centre or sea winds and currents do not dis-
perse the shipwrecked elements far from the wreckage zone, the UAV may find them
quickly. However, when the shipwrecked have been dispersed before finding the
first, the UAV has to track it and look for the remaining.

In order to facilitate the tracking task, the UAV puts a beacon in each ship-
wrecked the first time it detects them. So, after the UAV visual system first observes
the location St,i of any element, the UAV keeps obtaining its new locations St,i from its
designated beacon. This way of proceeding also favours the search and rescue tasks:
the UAV can move freely to search unobserved elements while tracking the already
observed that fall outside its field of view, and the vessels in charge of rescuing the
shipwrecked can be sent towards the designated beacons. 

The searching task requires a function that obtains At taking into account the
possible errors of the predictors and the shipwrecked dispersion. The first require-
ment is fulfilled using (in the controller c of the sensing mode) the available meas-
urements of the shipwrecked {Sk,l|Dk,l ≠ never, k ≤ t}) instead of the predicted position
Mt,i (used in the prediction controller r). For achieving the second, the sensing con-
troller c is developed over a feedforward ANN s, which is trained with the behav-
iours proposed by an expert for different situations.

   
At =

1
N

Mt,i
i=1

N

∑   
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Sensing ANN controller   At = c(Ut-1, {Sk,l|Dk,l ≠ never, k ≤ t}) 
Implementing a sensing controller that uses the available measurements {Sk,l|Dk,l

≠ never, k ≤ t}) requires a function c with an increasing number of inputs. To fix the
number of inputs and compact the available information, we select the following four
parameters (after checking other possibilities also based on {Sk,l|Dk,l ≠ never, k ≤ t}) as
the best sensing ANN inputs:

— It,1, the orientation of the mean direction of the previously observed ship-
wrecked. This variable lets the ANN know the global tendency of the already
located shipwrecked elements. 

— It,2, the distance of the UAV to the mean location of the previously observed
shipwrecked. This variable lets the ANN know how far the UAV might travel
while it still observes castaways and changes the searching radio of the ANN.

— It,3, the orientation of the mean direction of the shipwrecked that have only
been observed twice (because we need two elements to determine a direc-
tion). This variable lets the ANN know if the unobserved elements are dis-
persing and consider new searching directions.

— It,4, the percentage of already located shipwrecked. This variable adapts the
erratic behavior and searching radio of the ANN. 

The relationships between the four ANN inputs [It,1, It,2 , It,3, It,4] and the available
measurements {Sk,l|Dk,l ≠ never, k ≤ t} are presented in the following equations:

Note that to obtain It,1 and It,3, we don’t divide the summations between N, because

vectors [ΔX,ΔY ] and have the same orientation. Besides, the summations
are over Dt-1,i to ensure that there are at least two observations for the new located el-
ements and more than two for the previously located ones.

1, 1,

,1 , 1, , 1,

previously previously

dir  ,  
t i t i

x x y y
t t i t i t i t i

i D i D

I S S S S  (3)

1, 1,

2 2

, ,

previously previously

,2

1, 1,

1: 1:

IsTrue previously IsTrue previously

t i t i

x y
t i t i

i D i Dx y
t t t

t i t i
i N i N

S S
I U U

D D
 (4)

1, 1,

,3 , 1, , 1,

just just

dir  ,  
t i t i

x x y y
t t i t i t i t i

i D i D

I S S S S  (5)

1,

1:
,4

IsTrue nevert i
i N

t

D
I

N
 (6)

,
X Y
N N
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The sensing ANN output cannot be directly At since it stores the next waypoint,
in global Cartesian coordinates, that the UAV has to reach, and the ANN inputs [It,1 ,

It,2 , It,3 ] are distances and orientations, which only provide relative information. There-
fore, we choose as sensing ANN output  Ot = [Or

t , Oθ
t ], a high level command that stores

the displacement and orientation that the UAV has to follow to reach the waypoint At.
The relationships between At and Ot are defined by the next expressions:

Ax
t = U x

t + Or
t cos Oθ

t (7)

Ay
t = U y

t + Or
t sin Oθ

t (8)

Figure 5 presents the complete sensing controller At = c(Ut-1, {Sk,l|Dk,l ≠ never, k ≤
t}), that consists of the sensing ANN  Ot = [It,1, It,2 , It,3, It,4], and the input and output
translation processes (Equations (3-6) and (7-8)). The simplicity of the translation
operations doesn’t overload the complete sensing controller. Moreover, the use of a
sensing ANN, whose inputs and outputs are relative coordinates, allows the complete
sensing controller to extend the behaviour learnt through the information gathered
on one point, to the rest of the space. Finally, the selected ANN is a feedforward neu-
ral network with four inputs [It,1, It,2 , It,3, It,4], two outputs [Or

t , Oθ
t ], and three layers

with only four neurons in the input layer, eight in the hidden and two in the output. 

Training 

The pairs of inputs [It,1, It,2 , It,3, It,4] - outputs [Or
t , Oθ

t ] used to train the sensing
ANN s are generated according to a set of rules defined for different situations. The
next two situations illustrate the followed process:

— When none of the beaconed shipwrecked falls inside the UAV field of view,
the UAV should return to the observation area. The Oθ

t and Or
t that will drive

the UAV towards it, can be obtained based on It,2 and It,1. Figure 6.a) illustrates
this situation. 

— When the UAV is flying according to the direction of the already observed
shipwrecked and detects a new one that is moving with a different orienta-
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tion, the UAV should correct its orientation to search new unobserved ones in
the surrounding area of the just observed element. The Oθ

t that will drive the
UAV towards it, can be obtained based on It,1 and It,2 . Figure 6.b) illustrates
this situation. 

For each situation, we create a rule based on the parameters that govern it. With
the rule, we generate pairs of inputs-outputs that are used to train the sensing ANN.
The training step, performed only once for each UAV type, uses the UAV model 
Ut+1 = f (Ut , At).

The whole system

The onboard UAV controller is implemented as an expert system made up by the two
controllers (see previous sections), alongside a manager in charge of the following:

1) Deciding in which working mode the expert system is, according to the infor-
mation provided by the UAV onboard sensors. In particular, before the UAV
vision system finds the first shipwrecked the expert system must work in pre-
diction mode; once the first element is detected, it switches to sensing mode.

2) Controlling the number of already observed shipwrecked. 
3) Managing exceptions related with the lapse until a new element is detected.

The behaviour depends on the working mode. When the UAV is in prediction
mode and no other element is observed for a period of time longer than origi-
nally expected, the UAV must send an alarm to the rescue centre requesting
orders. When the UAV is in sensing mode and cannot find any new element
during a designated period of time, the manager directly modifies the sensing
ANN input parameter It,2, incrementing its value accordingly to the time that
has passed since the last new observation, with the purpose of exploring areas
farther away from the mean position of the already located shipwrecked. 
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The steps carried out after the rescue centre receives an alarm are the following:
1) As soon as the alarm is received, the rescue centre runs its numerical predictor

Mt+1,i = g(Mt,i) to generate the data pairs Mt,i and ΔMt+1,i =Mt+1,i - Mt,i used to
train the prediction ANN  ΔMt+1,i = p(Mt,i).

2) Next, the trained prediction ANN  ΔMt+1,i = p(Mt,i) is loaded into the UAV
expert system and then, the mission on prediction mode starts.

3) While flying in prediction mode, the expert system runs the complete predic-
tion controller, that includes the prediction ANNs and prediction controller,
to obtain the high level commands At that drive the UAV towards the mean of
the predicted values of the shipwrecked positions. 

4) Once the first shipwrecked is observed, the expert system stops the complete
prediction controller and starts running the complete sensing controller, that
includes the sensing ANN  Ot = s(It,1, It,2 , It,3, It,4), and the input and output pro-
cessing steps. When the UAV does not observe any new shipwrecked for a
long period of time, it also modifies directly the input It,2 of the sensing ANN. 

The whole expert system and these main steps are presented in figure 7, which
does not include all the variables and connections to make it visually simpler. The
missing information can easily be inferred from the previous figures and equations.
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RESULTS

Next, we show the behaviour of the whole expert system in two simulated sea rescue
tasks that differ in the distance that exists between the rescue centre and the wrecked
area, and therefore, in the spread of the shipwrecked when the UAV finds the first
element. In both cases, the total number of castaways N=10.

To run the experiments, we include our expert system in a MATLAB simulator that
is also responsible of calculating at every time step the ‘real’ castaways and UAV posi-
tions. The shipwrecked movements, simulated during the two phases with the rescue
centre predictor instead of the onboard ANN based predictor, are used to obtain the
shipwrecked measurements (St,i and Dt,i ). The UAV positions (Ut ) are obtained with
a complex model that defines the UAV dynamics and includes an onboard low level con-
troller in charge of stabilizing and driving the UAV towards the high level command
positions At,i obtained by the expert system. Besides, the simulator also randomly
generates the initial positions of the shipwrecked in a small area around the inital
wrecked position M0,i . Therefore, the simulator closes the control loop: from the point
of view of the expert system it applies its output (At,i ) to the UAV to generates its in-
puts (Ut, St,i and Dt,i) considering the UAV and shipwrecked simulated positions. 

The results of the two experiments are presented in figures 8 and 9 using distinct
glyphs for different elements and phases, whose meaning is shown at the legend at
the bottom of figure 8. The simulated positions of the shipwrecked before each of
them is first observed are presented with a dark grey circle and afterwards with a
light grey diamond. Besides, to identify which point belongs to each castaway, we
join them with a line in order to observe their trajectory too. The mean of the esti-
mated positions of the shipwrecked at each time step before the first is observed is
shown with a dark x. The mean of the observed positions of the detected ship-
wrecked after the first observation is presented with a dark star. When the shapes are
not distinguishable, the differences on the grey levels among all these symbols can be
used to identify these elements. The UAV trajectory is presented with a black line
and the field of view at the positions when a new unobserved castaway is detected
with a dashed circle identified as s#. The arrows represent the mean direction of the
sea wind and currents. The first graphic inside each figure represents the whole
experiment while the others show a zoomed region of the experiment (marked in the
first figure with a square). Finally, note that as we draw the trajectories of the simu-
lated shipwrecked and UAV, the represented unobserved simulated elements that fall
inside the UAV field of view at a given time t don’t necessary correspond to any of the
simulated position they have at t. In other words, an unobserved castaway (circle)
that is inside a dashed circle doesn’t become observed (diamond) unless it was really
inside the dashed circle at the correct time step. 
In the first experiment the ship wrecks at the upper left corner of figure 8.a) and the
rescue centre is placed only 2000 m apart in the upper right corner. The rescue centre
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receives the message, trains the onboard
prediction ANN for the current sea state,
and the UAV starts flying on prediction
mode towards the mean estimation
obtained by the expert system, while the
castaways are adrift by the simulator. Once
the UAV has reached the online predicted
spot, before the castaways have been sig-
nificantly spread, it detects simultaneously
all but one shipwrecked when its field of
view is s1. Then, the UAV starts flying on
sensing mode, tracking the 9 observed
shipwrecked (light diamonds) while it
searches the remaining (dark circles) fol-
lowing a zigzag trajectory close to the
mean of the observed castways (dark
stars). This behavior, shown in figures 8.a)
and 8.b), continues until the UAV field of
view becomes s2 and the UAV observes the
last item in the A1 region. Then the UAV
finishes its mission.

The setup of the second experiment,
presented in figure 9, differs from the first
on the distance of 10000 meters between
the ship wrecked position and rescue cen-
tre. Figure 9.b) shows the prediction phase
and how this bigger distance lets the sea
winds and currents increment the simulat-
ed shipwrecked dispersion a lot before the
UAV arrives at the online predicted spot
and detects the first shipwrecked with the
s1 field of view. Figure 9.c) shows the part

of the sensing mode behavior where the following 6 castaways are observed when the
UAV fields of view are s2-s7, and so their dark circle glyph becomes a light diamond.
In this area the UAV trajectory is close to the mean trajectory of the found castaways
(dark stars) because the lapse between two new observations is small. Figure 9.a) and
9.d) show how the behavior changes after observing the 7th castaway, because no new
observations are obtained for long and the expert system extends the UAV searching
zone incrementing It,2 accordingly with the time without new observations. This
allows locating elements that are further away from the mean trajectory of the
detected ones. Figure 9.d) shows when the last castaway, moved away from the main
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Figure 8. First experiment.

b) A zone. Sensing mode

a) Global view
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group, is found at s8. At this moment, the searching radio is reduced to locate closer
castaways. As time passes without new findings the searching radio increases again.
The remaining two shipwrecked are not found in the represented experiment. Final-
ly, although in region C1 the UAV and unobserved trajectories are really close, the
UAV does not find them because their position at the same time step is not.

CONCLUSIONS

In this paper, we present a new expert system, based on neural networks, to guide a
UAV that has to search and locate castaways on a wide area after a shipwreck. The
expert system is designed to work in real time on board of any UAV, using the predic-
tion or the measurements of the castaways provided by the UAV. So far, it works suc-
cessfully with little information about the castaways position and really simple user-
defined behaviors. We plan to expand both in the near future, including statistical
techniques to tack the observed castaways, incrementing the types of inputs of the
sensing ANN and training it with more complex behaviors.
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Figure 9. Second experiment.
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SISTEMA EXPERTO PARA GUIADO DE VEHÍCULOS
AÉREOS NO TRIPULADOS BASADO EN REDES
NEURONALES ARTIFICIALES

RESUMEN

En las tareas de rescate marítimo es crucial alcanzar la zona de la catástrofe en el
mínimo tiempo posible, porque según éste aumenta suele crecer la dispersión de los
naufragos y la dificultad de su búsqueda. Por lo tanto, el uso combinado de vehículos
aéreos y marítimos no tripulados (UAVs y USVs) en este tipo de tareas suele resultar
ventajoso, ya que el tiempo de llegada de los primeros es habitualmente mucho
menor que el de los segundos. Teniendo en cuenta las capacidades de ambos tipos de
vehículos, una distribución conveniente de la tarea de rescate consiste en asignarle a
los UAVs las labores de localización y seguimiento de los naufragos, y a los USVs las
de rescate de los naufragos localizados. Este artículo se centra en las partes de la tarea
de rescate directamente relacionadas con el UAV. 

Con este objetivo, se ha diseñado un sistema experto que genera las órdenes de
alto nivel que indican al UAV hacia donde debe dirigirse para localizar los náufragos.
Este sistema tiene que ser incorporado en un UAV, motivo por el que es conveniente
minimizar su coste computacional y de memoria. Por esta razón, se han utilizado
como núcleo del sistema experto un conjunto de redes neuronales, ya que además
son fáciles de implementar e integrar en la tecnología existente. Por último, sus capa-
cidades de respuesta en tiempo real y su alta adaptabilidad a diferentes situaciones,
hacen que resulten elementos apropiados para resolver nuestro problema.

El sistema experto finalmente diseñado consta de dos tipos de redes neuronales:
unas encargadas de predecir la posición de los náufragos antes de que estos sean
localizados y otras de guiar su búsqueda una vez que el primer elemento ha sido
encontrado. El primer tipo de red forma parte del subsistema que funciona durante
la fase en la que el UAV sigue, de acuerdo con una ley de control muy sencilla, las
posiciones predichas por este tipo de red. El segundo constituye la parte fundamen-
tal del subsistema que funciona durante la fase de sensorización y búsqueda. La figu-
ra 10 muestra un esquema de todo el sistema, en el que las operaciones primordiales
son realizadas por las redes neuronales, explotándose así su eficiencia intrínseca. 

Finalmente, queremos hacer notar que los parámetros de las redes neuronales uti-
lizadas son obtenidos de dos procesos de entrenamiento diferentes de forma que las
redes neuronales de predicción adaptan su comportamiento al estado de los vientos y
corrientes de la zona de naufragio y que las redes neuronales de sensorización lo hacen
al comportamiento sugerido por un experto para diferentes situaciones de rescate. 
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