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Quantitative Feedback Theory (QFT) is a control methodology that allows you to work with mathe-
matical models of high order, although it gives rise to compensators (controllers and/or prefilters) with
order also high. The implementation of such controllers generates problems, even in some occasions
unworkable. So, it’s necessary trying to reduce the order of the model, to get low order controllers;
or treating with the high order plant and reducing only the solution controllers. We are applying a
QFT order reduction methodology for the course-changing control of a marine vehicle. The results are
compared with those obtained with a classical QFT controller and with a PID controller.
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1. Introduction

Some control methodologies, as Quantitative Feedback The-
ory (QFT), allow you to work with mathematical models of
high order, but this means producing compensators (controllers
G and prefilters F) with order also high. The implementation
of these compensators is complicated, even in some occasions
impossible. There are two solutions for this problem:

• Reducing the order of the original plant P before design-
ing, getting lower order controllers.

• Designing the compensators with the high order original
plant and, afterwards, trying to reduce these ones.

Obtained reduced functions will be considered valid always
when they show similar behavior to the original ones. So, re-
duced plants will fulfill the design specifications in the same
way than the original plant and, reduced controllers must main-
tain the same degree of stability and control than the original
compensator.
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Suppose a transfer function (TF) given in the NUM/DEN
polynomial form,

NUM(s)
DEN(s)

=
b0sm + · · · + bm

a0sv + · · · + an
(1)

The objective is reducing its order, actually, reducing the
number of poles and zeros, so that, the function (plant Pr or
compensator Gr) will have got the most similar form as possible
to the original, remaining its dynamics behavior. On the other
hand, when the final function is a controller, it must continue
maintaining the stability of the system. To get both things, the
reduced function should fulfill next:

• m ≤ n . More poles than zeros

• No right half plane (RHP) poles or zeros.

• No zero poles.

• The open loop reduced function (Lr = PGr with reduced
controller or, Lr = PrG with reduced plant) does not
cross the 2nd quadrant of Nichols chart (NC) or if it does,
it fulfills at least conditional stability (Yaniv, 1999).

Reduction may be complicated on the original plant when
the control problem contains a high degree of uncertainty, since
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the reduction process must apply over each one of the different
model scenarios, which it may indeed result impracticable.

The procedure for rationalization of transfer functions to re-
duce them is described in (Joglar and Aranda, 2014). It can be
applied both on plants and compensators through a matlab pro-
gram (”RACW.M”).

We are applying this order reduction methodology for the
course-changing QFT control of a marine vehicle. In particular,
we start using the ship model described in (Rueda et al., 2001):
the R.O.V. Zeefakkel, simplified with the first order Nomoto
model. This control problem is solutioning with QFT and, after-
wards, the original controller is reduced with the TF reduction
order method presented here. The reduced results are compared
with those obtained with the classical QFT solution developed
and with the PID controller obtained by means of genetic algo-
rithms proposed by (Rueda et al., 2001).

2. QFT Order Reduction Methodology

QFT methodology allows working with high-order plants,
but usually this involves design of controllers and prefilters with
also high order. In the process of shaping the open-loop TF
or prefilters through the QFT IDE, you add typical design ele-
ments as, real or complex pole, real or complex zero, and oth-
ers, to fulfill specifications. This makes the order resultant TF
(controller or prefilter) grows, as much as more elements you
add.

QFT order reduction methodology performs a reduced TF
in numerator/denominator polynomial format with behavior as
close as possible to the original TF, usually given in complex
form within a certain frequency range w.

Talking about similar behavior between two TFs in two dif-
ferent formats, complex versus polynomial, means that both
should have a similar appearance in the NC, offering magni-
tudes and phases for same frequencies as close as possible. So,
we ensure that both TFs will fulfill design specifications simi-
larly.

RACW.M is a function in Matlab which performs a RA-
tionalization process as it is described by (Horowitz, 1992). It
works with complex input according to the supplied frequency
vector w and offers as output the corresponding transfer func-
tion (numer/denom). It allows users to decide the order of the
output functions, selecting the number of poles and zeros they
may contain. The order of the output TF we have introduced
will determine the difference in magnitude and phase, for each
frequency within the range used, between the output and the
input. So, selecting different output orders and observing the
differences in magnitude and phase we can achieve reducing
the order of the function to a value where these differences are
not too high, what implies generally a similar behavior between
input and output TFs in the NC.

The RACW.M program is formally described as follows,

function[numer,denom,error]=racw(c,w,n,m) (2)

Where the input arguments of the function are,

c vector with size [N,1]; it’s the complex input TF.

w vector with size [N,1]; it’s the work frequency range.

n, m number of poles and zeros, respectively, for the output
reduced TF in the form ’numer/denom’.

Between the output reduced FT and input vector c(s) there
is the following relationship,

numer
denom

=
b0 + b1s + · · · + bnsn

a0 + a1s + · · · + amsm = c(s), with s = jw (3)

Which can be rearranged as,

[a0+a1s+· · ·+am−1sm−1]−
1
c

[b0+b1s+· · ·+bnsn] = −amsm (4)

From this equation, we can develop N more equations re-
placing the input function of N complex numbers c(s), one for
each frequency w. Applying the rationalization process de-
scribed by (Horowitz, 1992), it is obtained values for the m
coefficients ai and n coefficients bi.

Now, if we perform a polynomial evaluation of the TF with
the coefficients ai and bi obtained, comparing in magnitude and
in phase with the value of the original complex TF c(s), errors
in magnitude and phase of the process are leading.

3. Course-Changing Control Problem of an Autonomous
Marine Vehicle

We are using QFT as a robust control methodology in the
design of the compensators necessary for the system with un-
certainties described in (Rueda et al., 2001). The model of the
ship, a vessel of 45m in length the R.O.V. Zeefakkel, may be
approximated by the next equation (plant P(s)), which relates
the heading angle Ψ as input command, with the rudder angle
δ as output command from the controller to the steering gear
(Fossen and Paulsen, 1992),

P(s) =
Ψ

δ
(s) =

K
s(1 + sT )

(5)

At a speed of 10knots, the uncertainty of the model is given
by the following variations in the K and T parameters,

K ∈ [0.21, 0.5]; T ∈ [29.5, 5.31] (6)

It will be a two-degrees of freedom LTI control system per-
formed with a controller G and a prefilter F, in order to reduce
the output variations of the parametrically uncertain plant P.

In order to achieve robust stability and robust tracking, the
system must fulfill the following specifications:

• Stability margins: phase margin at least 45o and gain
margin bigger than 2dB, formally described as,

∣∣∣ PG
1 + PG

∣∣∣ ≤ ρ, with robust margin weight, ρ = 1.2
(7)
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• Tracking: expressed by the lower TL and upper TU track-
ing bounds respect to the closed loop transfer function
TR,

TL(s) ≤ TR(s) ≤ TU(s) (8)

With s = jw and for ω ≤ 0.4rad/s, being,

TR =
∣∣∣F PG

1 + PG

∣∣∣ (9)

TL =
269.5 ∗ 10−6

q(s)
(10)

TU =
195 ∗ 10−4s + 49 ∗ 10−4

s2 + 122 ∗ 10−3s + 49 ∗ 10−4 (11)

for q(s) = s3 +181∗10−3s2 +118.3∗10−4s+269.5∗10−6

For the control design, it has been chosen the nominal plant P0
given by,

P0(s) =
0.21

s(29.5s + 1)
(12)

And we have established the following set of frequencies,

w = {0.03, 0.07, 0.1, 0.2, 0.4, 1, 1.2} (13)

Using the interaction design environment (IDE) of the QFT
Toolbox in Matlab designed by (Borghesani et al., 1995) the
boundary of plant templates is computed for each frequency
of the work set: 28 plants at 7 frequencies. Observe the plant
templates computed in the Figure1, where the nominal plant is
marked and occupies, at each frequency, the lower magnitude
position in the NC.

After computing bounds independently, robust margins and
robust tracking, they are grouped and the intersect bounds are
processed. Now, it can be started the design process. Adjust-
ing the nominal open-loop transfer function L0=P0G in an ade-
quate way, we ensure no bounds are violated and specifications
are fulfilled.

The controller obtained in the shaping process of L0 is (3, 3)
order, i.e. with 3 zeros and 3 poles, shown in the Figure 2 and
formally described as,

G(3,3 =
1.195s3 + 4.5386s2 + 1.4856s + 0.0365

s3 + 1.6853s2 + 2.0323s + 0.1873
(14)

Adjusting the prefilter F with the IDE of the QFT Toolbox
in Matlab, it is obtained,

F(0, 1) =
0.04915

s + 0.004915
(15)

The frequencial analysis offers the results shown in the Fig-
ure3 and Figure4, fulfilling margins and tracking specifications.

At last, in the Figure5 we can see the tracking of the control
system for a course-change of 10o in the time domain. The
solid lines represent the different scenarios of the plant due to its
uncertainty. The lower tracking bound is violated in a minimum
part.

4. Application of QFT Order Reduction Methodology

Applying the reduction procedure described above, we get a
reduced TF for G(3, 3), the controller Gr(1, 1), whose graphical
representation in the IDE of the Toolbox QFT in Matlab has the
appearance shown in Figure 6.

The results obtained from the comparative analysis between
the Figure 2 and Figure 6 are:

• Same behavior in both functions of magnitude and phase,
in the frequency range (0.03rad/s− 1.2rad/s). It defines
the same robustness of the two TFs in the frequencial do-
main, fulfilling every specification.

• Correct gain margin (GM) and phase margin (PM). They
fulfill the specification for robust stability (RS), expressed
as,

|GM| ≈ 99dB ≥ 2dB = GMRS (16)
|PM| ≈ 66o ≥ 45o = PMRS (17)

• One crossover frequency, similar in both cases.

• Reduced TF fulfills tracking specifications in a similar
way as the original TF.

The reduced TF Gr has the order (1,1), ie, one zero and one
pole and, it is given by the following expression:

Gr(1, 1) =
2.9409s + 0.197

s + 0.611
(18)

The magnitude and phase errors for the reduced TF Gr(1, 1)
respect to the original TF G(3, 3) in absolute terms and, for the
predetermined frequency range w, are described in the Table1
below and afterwards, graphically in Figure7.

The magnitude and phase errors obtained for reduced func-
tion Gr(1, 1) compared with the original TF, within the whole
frequency range w, are small enough to consider it appropriate,
in this regard.

The frequencial analysis offers the results shown in the Fig-
ure8 and Figure9, fulfilling margins and tracking specifications.
Observe results in tracking specifications with Gr(1, 1) are bet-
ter than with the original controller G(3, 3).

Finally, Figure10 shows the tracking of the control system
for a course-change of 10o in the time domain using Gr(1, 1).
Results are much better than those with the original controller
G(3, 3).

Now, we are comparing the reduced results generated with
the Gr(1, 1) controller with those obtained with the PID con-
troller produced by means of genetic algorithms proposed by
(Rueda et al., 2001). The controller GPID has the order (2,2),
ie, two zeros and two poles and, it is given by the following
expression:

GPID =
15523.7s2 + 448.37s + 0.1

44737s2 + 4473.7s
(19)
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Figure 1: Characteristics of the reduced TF Gr(1, 1) respect to the original function G(3, 3) in the frequency range w

C(in)
0.03 0.2285+0.1648j 0.3287+0.1283j 0.1066 14.4737
0.07 0.3305+0.3165j 0.3563+0.2961j 0.0329 4.0315
0.1 0.4044+0.3848j 0.3907+0.4174j 0.0354 -3.3146
0.2 0.5613+0.5329j 0.5758+0.7742j 0.2417 -9.8473
0.4 0.7831+0.8348j 1.108+1.2j 0.4888 -0.4532
1 2.1284+1.2727j 2.2291+1.165j 0.1475 3.2862
1.20 2.6001+0.9512j 2.4018+1.0587j 0.2256 -3.6936

w
rad/s C(out)

Mag Error
c(in)-c(out)

Phase Error
Phase[c(in)]-Phase[c(out)]

Source: Authors

Figure 1. Plant Templates in the Nichols Chart

Source: Authors
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Figure 2. Shaping of L0, obtaining G(3,3) controller

Source: Authors

Figure 3. Stability margins results in the frequency domain using G(3,3)

Source: Authors
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Figure 4. Tracking results in the frequency domain using G(3,3)

Source: Authors

Figure 5. Tracking results in the time domain using G(3,3). Course-change of 10o

Source: Authors
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Figure 6. the reduced open loop function with Gr(1, 1) controller

Source: Authors

Figura 7. Graphic features of Gr(1, 1) compared with G(3, 3), applying RACW(G,w,1,1)

Source: Authors
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Figura 7. Graphic features of Gr(1, 1) compared with G(3, 3), applying RACW(G,w,1,1)

Source: Authors

Figura 8. Stability margins results in the frequency domain using Gr(1, 1)

Source: Authors
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Figura 9. results in the frequency domain using Gr(1, 1)

Source: Authors

Figura 10. Tracking results in the time domain using Gr(1,1). Course-change of 10o

Source: Authors
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Figura 11. Setting the open loop function with GPID(2, 2) controller

Source: Authors

Figura 12. Stability margins results in the frequency domain using GPID(2, 2)

Source: Authors
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Figura 13. Tracking results in the frequency domain using GPID(2, 2)

Source: Authors

Figura 14. Tracking results in the time domain using GPID(2, 2). Course-change of 10o

Source: Authors
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For this, using the shaping procedure of the open loop func-
tion with the GPID(2, 2) controller, as shown in Figure11, we
can compare the results with those in the analysis of the Gr(1, 1)
controller application. So,

• Different and incorrect behavior, in the frequency range
(0.03rad/s − 0.1rad/s). The open loop function with
GPID(2, 2) controller doesn?t fulfill every specification in
the frequencial domain.

• Correct gain margin (GM) and phase margin (PM). They
get fulfilling the specification for robust stability (RS),
expressed as,

∣∣∣GM
∣∣∣ ≈ 85dB ≥ 2db = GMRS (20)∣∣∣PM
∣∣∣ ≈ 82o ≥ 45o = PMRS (21)

• One crossover frequency, similar in both cases.

• It doesn?t fulfill tracking specifications, as shown in Fig-
ure13.

The frequencial analysis offers the results shown in the Fig-
ure 12 and Figure 13, fulfilling margins specifications but not
tracking specifications.

Finally, Figure 14 shows the tracking of the control system
for a course-change of 10o in the time domain using GPID(2, 2).
Observe, results are worse than those with the original con-
troller G(3, 3) and much worse than results offer with the re-
duced controller Gr(1, 1).

5. Conclusions

In a control problem it is often interested the lowest order
solutions as possible, in technologically and/or economically
practical terms. Always there must be a compromise solution
between effectiveness and simplified controller order. There are

two ways to get it: trying to reduce the order of the original
plant to obtain directly low-order controllers; or reducing the
solution controllers of high order, obtained from the original
plant.

Anyway, the used order reduction procedure must ensure fi-
nal reduced functions have a similar behavior than the original
ones. So, in the first case, the reduced plants will fulfill the de-
sign specifications in the same way as the original plant and, in
the second case, the reduced controllers must maintain stability
and control with the same degree as the original compensator.

The goodness of the reduction methodology of any poly-
nomial transfer function has been proved with the example of
an autonomous course-changing marine vehicle. First, the con-
trol problem has been solved applying QFT. Then, it has been
used the reduction procedure over the previous high order con-
troller to obtain a simplified controller, which offers a similar
dynamics behavior of the control system. At last, it has been
performed a comparative between the obtained results using a
PID controller and both former cases.
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