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In recent years, inland navigation networks benefit from the innovation of the instrumentation and
SCADA systems. These data acquisition and control systems lead to the improvement of the manage-
ment of these networks. Moreover, they allow the implementation of more accurate automatic control
to guarantee the navigation requirements. However, sensors and actuators are subject to faults due to
the strong effects of the environment, aging, etc. Thus, before implementing automatic control strate-
gies that rely on the fault-free mode, it is necessary to design a fault diagnosis scheme. This fault
diagnosis scheme has to detect and isolate possible faults in the system to guarantee fault-free data and
the efficiency of the automatic control algorithms. Moreover, the proposed supervision scheme could
predict future incipient faults that are necessary to perform predictive maintenance of the equipment. In
this paper, a general architecture of sensor fault detection and isolation using model-based approaches
will be proposed for inland navigation networks. The proposed approach will be particularized for the
Cuinchy-Fontinettes reach located in the north of France. The preliminary results show the effectiveness
of the proposed fault diagnosis methodologies using a realistic simulator and fault scenarios.

c© SEECMAR | All rights reserved

1. Introduction

The main management objective of the inland navigation
networks is to guarantee the navigation levels in each reach
(Blesa et al., 2012), i.e. the Normal Navigation Levels (NNL).
These levels are principally disturbed by the navigation and the
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3École des Mines de Douai, Bd. Lahure 764, Douai, 59500. France. E-mail
address: eric.duviella@mines-douai.fr.

4E-mail address: vicenc.puig@upc.edu.
5E-mail address: yolanda.bolea@upc.edu
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lock operations. During lock operations, large volume of wa-
ter is withdrawn from the upstream reach and supplied to the
downstream reach causing a wave travelling in both directions;
upstream to downstream, and downstream to upstream after re-
flection. To reduce the effect of wave and to maintain the NNL,
it is necessary to control the gates which are generally located
beside the locks. Another possibility is to control the discharges
from natural rivers. The water levels are controlled by gates and
measured by tele-operating sensors. To achieve these aims, an
adaptive and predictive control architecture has been proposed
in (Duviella et al., 2013) as depicted in Figure 1. This architec-
ture is based on a SCADA system allowing the tele-control of
the navigation network. A Human Machine Interface (HMI) is
dedicated to the supervision of the inland navigation network
by a supervisor. The management constraints and rules are
gathered in the Management Objectives and Constraints Gen-
eration module (MOCG). To perform the management of the
inland navigation network, a Hybrid Control Accommodation
module (HCA) allows the determination of set-points (Manage-
ment Strategies block) according to the current state (Supervi-
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sion block) and the forecasting of the future state (Prognosis
block) of the network. These strategies can be adapted or im-
proved according to the Decision Support module (DS).

In this work, we will focus on the part of the supervision
block that determines if a sensor fault is present in the system
(detection) and identifies what sensor is affected by the fault
(isolation). In particular, model-based fault diagnosis techniques
will be used for the implementation of the sensor supervision
block.

2. Model-Based Fault Detection and Isolation

The principle of model-based fault detection is to test whether
the measured inputs and outputs from the system are consistent
with the behavior described by a model of the faultless sys-
tem. If the measurements are inconsistent with the model of
the faultless system, the existence of a fault is proved. In gen-
eral, two different types of models can be distinguished: qual-
itative and quantitative models. Quantitative models are used
in the Systems Dynamics and Control Engineering community
(Gertler, 1998; Iserman, 2006; Blanke et al., 2006; Ding, 2008)
known as FDI (Fault Detection Isolation) community. Quan-
titative models are mathematical models that can be described
in time or frequency domains and most of the fault detection
techniques based on this kind of models uses a residual that de-
scribes the consistency check between the predicted, obtained
by the model, and the real behaviour, y(k) measured by the sen-
sors. This fault detection approach is known as based on ana-
lytical redundancy.

2.1. Robust Fault Detection

Ideally, in quantitative model-based fault detection meth-
ods, residuals should only be affected by the faults. However,
the presence of disturbances, noise and modelling errors causes
residuals to become nonzero in the absence of faults and thus
interferes with the detection of faults. Therefore, the fault de-
tection procedure must be robust against these undesired effects
(Chen and Patton, 1999).

In case parametric uncertainties are taken into account, the
healthy system model should include a vector of uncertain pa-
rameters bounded by sets that contain all possible parameter
values when the system operates normally.

One of the most developed families of robust approaches,
called active, is based on generating residuals which are insen-
sitive to uncertainty, while at the same time sensitive to faults.
This approach has been extensively developed by several re-
searchers using different techniques: unknown input observers,
robust parity equations, etc. In the book of Chen and Patton
(1999), there is an excellent survey of this active approach. On
the other hand, there is a second family of approaches, called
passive (Puig et al., 2008), which enhances the robustness of
the fault detection system at the decision-making stage.

2.2. Interval model

Let us assume that the system to be monitored can be mod-
eled using a model which is linear in the parameters and can be

expressed in discrete time regressor form as a Moving Average
(MA) model:

y(k) = ϕ(k, τ)θ + e(k) = ŷ(k) + e(k) (1)

where
- ϕ(k, τ) is the regressor vector of dimension 1xnθ which can

contain any function of inputs u(k) and output y(k).
- τ is the transport delay that is unknown but belongs to a

set of natural numbers:
τε{τ0 − λτ, τ

0 − λτ + 1, ...τ0 + λr} with τ0, λτεU and τ0 > λτ
- θεΘ is the parameter vector of dimension nθx1
- Θ is the set that bounds parameter values. In particular,

for interval models, the set of uncertain parameters is bounded
by an interval box centered in the nominal parameter values:

Θ@
[
θ1θ1

]
xLx

[
θnθθnθ

]
where:
- θi@θ0

i − λi; θi@θ0
i + λi i = 1, ..., nθ being θ0

i the nominal
parameter values;

- e(k) is the additive error bounded by a constant |e(k)| ≤ σ
.

The parameter set Θ and additive error bound σ are cali-
brated using fault-free data from the system (rich enough re-
garding the identification point of view) and in such a way that
all measured data in a fault-free scenario will be covered by the
interval predicted output produced by using model (1), that is

y(k)ε
[
ŷ(k) − σ, ŷ(k) + σ

]
(2)

where

ŷ(k) = max
θεΘ,τε{τ0−λτ,τ0−λτ+1,Lτ0+λr}

(ϕ(k, τ)θ)

(3)
ŷ(k) = min

θεΘ,τε{τ0−λτ,τ0−λτ+1,Lτ0+λr}
(ϕ(k, τ)θ)

One of the key points in model based fault detection is how
models are built and their uncertainty is estimated. The struc-
ture of the model, determined by ϕ(k, τ) and θ, nominal param-
eters θ0 and nominal transport delay τ0 can be obtained by the
physical knowledge of the system or by conventional identifi-
cation techniques (Ljung, 1999). The additive error bound σ
can be determined by anlasying the noise statistics. The delay
uncertainty λτ can be determined considering that the input pro-
cess signal is white noise and carrying out the study of the in-
dependence between the input and output process signals using
confidence intervals (usually, 99% or 95%). On the other hand,
given N measurements of outputs and inputs from a scenario
free of faults and rich enough from the identifiability point of
view, the uncertainty in parameters (λii = 1, ..., nθ) can by com-
puted by solving an optimization problem (Blesa et al, 2010).

2.3. Fault detection

Once the model (1) has been calibrated in a non-faulty sce-
nario, it can be used for fault detection checking if
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Figure 1: Inland navigation network adaptive and predictive control architecture.

Source: Authors

y(k)�εΥ(k) (4)

where Υ(k) is the direct image of the uncertain model de-
fined as

Υ(k) = {ŷ(k) + e|ŷ(k) = ϕ(k, τ)θ, θεΘ, |e| ≤ σ
τε{τ0 − λτ, τ

0 − λτ + 1, ...τ0 + λτ}} (5)
=

[
ŷ(k) − σ, ŷ(k) + σ

]
In case that (4) is proved, a fault can be indicated; otherwise

no fault is assumed to be present. Equivalently, the fault detec-
tion test (4) can be formulated in terms of the residual defined
as

r(k) = y(k) − ŷ(k) − e(k) = y(k) − θ(k, τ)Θ − e(k) (6)

Residual (6) corresponds to a MA parity equation (Gertler,
1998). Ideally, when modeling errors and noise are neglected,
residual (6) should be zero in a fault-free scenario and differ-
ent from zero, otherwise. However, because of modeling er-
rors and noise, residuals could be different from zero even in a
non-faulty scenario. In order to take into account uncertainty in
parameters and additive noise, the effects of these uncertainties
will be propagated to the residuals defining the region of ad-
missible residuals. A fault will be detected when zero does not
belong to this set. Thus, the fault detection test is equivalent to
check the following condition

0�εΓ(k) (7)

where Γ(k) is the interval of possible residuals defined as
follows

Γ(k) = {r(k)|r(k) = y(k) − ϕ(k, τ)θ − e, θεΘ (8)
|e| ≤ σ, τε{τ0 − λτ, τ

0 − λτ + 1, Lτ0 + λr}}

This test based on the direct evaluation of the residual is
known as the direct test (Blesa et al., 2011).

2.4. Fault isolation
Fault isolation consists in identifying the faults affecting the

system once a fault has been detected. Fault isolation could
be carried out, as classically proposed in FDI books (Gertler,
1998 and Isermann, 2006, among others). Given a set of nr
residuals {r1(k), L, rnr (k)} at time k, the fault detection tests (4)
or (7) applied component-wise to each single residual produces
the observed fault signature

φ(k) =
(
φ1(k), φ2(k), ..., φnr (k)

)
(9)

where

φi(k) =

0 if ri(k) = is consistent
1 if ri(k) = is not consistent

(10)

The observed fault signature is, then, supplied to the fault
isolation module that has the knowledge about the binary rela-
tion between the considered fault hypothesis set

f (k) =
{
f1(k), f2(k), ..., fn f (k)

}
(11)

and the fault signal set φ(k). This relation is stored in the
theoretical binary fault signature matrix (FSM) of dimension
nr xn f . Thereby, an element FS Mi, j of this matrix is equal to
1 if the fault hypothesis f j(k) is expected to affect the residual
ri(k) such that the related fault signal φi(k) is equal to 1 when



J. Blesa et al. / Journal of Maritime Research Vol XI. No. II (2014) 81–88 84

this fault is affecting the monitored system. Otherwise, the ele-
ment FSMi, j is zero-valued.

Considering single faults, a general approach to fault iso-
lation is based on comparing the observed fault signature φi(k)
with the theoretical one related to every fault hypotheses that
can be calculated as the distance between both vectors: φi(k)
and the jth-column of matrix FSM for the hypothesis f j, e.g.
using the Hamming distance measurement. As a result of this
comparison, a distance measurement dis j(k) is obtained for ev-
ery fault hypothesis f j, being dis(k) the vector of all the com-
puted distances at time instant k: dis(k) = (dis1(k), ..., dis j(k), ...,
disn f (k)). If the Hamming distance approach is applied, then

dis j(k) =

n f∑
i=1

(
(FS Ni, j) XOR(φi(k))

)
(12)

where XOR is the XOR logic operator. Then, the fault hy-
potheses with the shortest distance regarding the current ob-
served fault signature φ(k) are considered as the fault isolation
result:

DGN =

{
f jε f : if dis j(k) = min

νε{1,...,n f }
disν(k)

}
(13)

Thus, DGN denotes the set of fault hypothesis fj which are
consistent with the observed fault signals.

3. Inland Navigation Model

The real behaviour of every reach NRi of the network, can
be described by the Saint-Venant (SV) equations (Chow, 1959)
that are partial-differential equations describing accurately the
dynamics in a one-dimensional free surface flow. These equa-
tions express the conservation of mass and momentum princi-
ples in a one-dimensional free surface flow:

∂Q
∂x

+
∂S
∂t

= 0 (14)

∂Q
∂t

+
∂

∂x

(
Q2

S

)
+ gS

∂h
∂x
− gS (I − J) = 0

where Q = q(x, t) is the flow (in m3/s), S = S (x, t) is the
cross-sectional area (in m2), t is the time variable (in s), x is the
spatial variable (in m), measured in the direction of the move-
ment, h is the spatial variable corresponding to the water eleva-
tion (in m), g is the gravity (in m/s2), I is the bottom slope and
J is the friction slope.

Since there is no known analytical solution for equations
(14) in real geometry, they have to be solved numerically. Then,
the hydraulic behavior of this canal system can be simulated
through numerical methods. Because of the complexity and the
computational load of this complete distributed model several
simplified models have been deduced from the SV equations
with different simplifications (Bolea et al., 2014), as for ex-
ample the IDZ model (Litrico and Fromion, 2004). The IDZ
model is based on the linearisation of the SV equations around
a set-point (in this case given by the NNL). The canal reach

is divided into two parts: an upstream (uniform flow) part and
a downstream (backwater) part. The relation between the level
and the flow in these two parts is given by the following transfer
function (

y1(s)
y2(s)

)
=

(
G11 G21
G12 G22

) (
q1(s)
q2(s)

)
(15)

where: y1 and y2 are the levels and q1, and, q2 are the
upstream/downstream flow deviations from stationary values,
G11(s) =

p11 s+1
A1 s , G21(s) =

p12−e−τ21 s

A1 s , G21(s) =
p12−e−τ12 s

A2 s and
G22(s) =

p22 s−1
A2 s . Discretizing (15) using a sample time Ts, the

following MA models can be obtained

y1(k) = y1(k − 1) + b1
1,1q1(k) + b1

1,2q1(k − 1) +

+b1
2,1q2(k − τ21) + b1

2,2q2(k − τ21 − 1) + e1(k) (16)

y2(k) = y2(k − 1) + b2
1,1q1(k − τ12) + b2

1,2q1(k − τ12 − 1) +

+b2
2,1q2 + b2

2,2q2(k − 1) + e2(k)

In inland navigation reaches, there can exist intermediate
measurement levels and intermediate points were extra flows
can be injected/extracted. Then, in a general case, a reach
with ny measurement level points and with nq input/output flow
points, the following model can be obtained

yi(k) = yi(k − 1) + (17)

+

nq∑
j=1

(
bi

j,1q j(k − τ j,i) + bi
j,2q j(k − τ j,i − 1)

)
+ ei(k)

i = 1, ..., ny

that can be rewritten as

yi(k) = ϕ(k, τi)Θi + ei(k) i = 1, ..., ny (18)

with

ϕi(k, τi) = (yi(k − 1), q1(k − τ1,i), q1(k − τ1,i − 1), (19)

..., qnq (k − τnqi − 1)) Θi =
(
1, bi

1,1, b
i
1,2, ..., b

i
nq,2

)T

Since the IDZ is a physical-based model with a given struc-
ture, determined by ϕi(k, τi) and Θi = 1, ..., ny in (18)-(19),
nominal parameters ϕ0

i and nominal delays τ0
i are given by the

physical knowledge of the system (Litrico and Fromion, 2004).
Finally, given input/output data from a scenario free of faults
and rich enough from the identifiability point of view, the un-
certainty in parameters and time delays around their nominal
values can be estimated.
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Figure 2: Piece of inland navigation network of the north of France and its Scheme

Source: Authors

4. Fault Detection and Isolation Scheme

Considering a navigation reach, described by (17), with ny

measurement level points and nq input/output flow points, ny

different sensor faults can be defined

yi(k) = yn f
i (k) + fi(k) i = 1, ..., ny (20)

where yn f
i (k) is the real value of the level i and fi(k) the

additive error fault that affects to level sensor i.
Thus, ny primary residuals can be obtained as follows

ri = yi(k) − ϕi(k, τi)Θi − ei(k) i = 1, ..., ny (21)

Once the interval model has been calibrated, consistency
test (7) can be applied to every residual (21).

Regarding the fault isolation, considering the residuals af-
fected by the possible faults, the Fault Signature Matrix defined
in Table 1 can be obtained.

The problem of using model (17) in (21) for generating
residuals, that allow sensor fault detection, is that it behaves
as a dead-beat observer which can only indicate a fault for a
minimum time period given by the system order. This implies
that after a number of samples (related to the order of the sys-
tem) once the fault has appeared, the residual tends to be small
even the fault is still present (Ding, 2008). In order to deal with
this problem, when an inconsistency is detected in residual ri at
instant k f a new residual ri 2 is activated for k > k f

ri 2(k) = yi(k) − ŷi(k) i = 1, ..., ny (22)

Table 1: Fault Signature Matrix of residuals system (21)

· · ·

1 0 0 0 0

0 1 0 0 0

⁞ 0 0 0 0

0 0 0 1 0

0 0 0 0 1

f
1

f
2

f
ny-1

f
ny

r
1

r
1

′·.
r

ny-1

r
ny

Source : Authors

with ŷi(k) obtained by the following mass-balance average
simulation model

ŷi(k) = ŷi(k − 1) +
1
A

Qi(k) (23)

where A is the longitudinal area of the reach and the input
average flow Qi(k) is computed as

Qi(k) =

nq∑
l=1

k−1∑
j=kH

ql( j − τl,i) (24)

and the initial condition of the simulation model is given by

ŷi(k f ) =

j=k f−1∑
j=k f−H

yi( j) (25)
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Then, the fault signature component φi(k) will be activated
while the residual ri 2(k) will be bigger or equal a threshold σ1 2
, i.e.,

φi(k) =

0 if |r1 2(k)| ≤ σ1 2

1 if |r1 2(k)| > σ1 2
(26)

whereσ1 2 i = 1, ..., ny are the detection threshold calibrated
in a fault-free scenario.

5. Cuinchy Fontinettes Reach

The Cuinchy-Fontinettes Reach (CFR) has a crucial impor-
tance due to its localization between two major catchment areas
and its size (more than 40 km long). The main use of the CFR is
for navigation purposes. However, it can be used to stock water
volumes during wet periods in order to avoid or to limit floods
in the two catchment areas, and during dry period to supply
water to these two areas.

The CFR is located between the upstream lock of Cuinchy
at the East of the town Bethune and, at the Southwest of the
town Saint-Omer, the downstream lock of Fontinettes (see Fig-
ure 3). The first part of the channel corresponds to the 28.7 km
from Cuinchy to Aire-sur-la-Lys. The second part of the chan-
nel corresponds to 13.6 km from Aire-sur-la-Lys to Fontinettes.
The channel is entirely artificial and has no significant slope.
Considering the navigation flow, the water runs off from Cuinchy
to Fontinettes. There are three measurement points in Cuinchy,
Aire-sur-la-Lys and Fontinettes. The input/output flow points
are located in:

• Cuinchy where the flow can be injected by the lock op-
eration (activated by navigation rules) and a submerged
gate that can supply a controlled flow.

• Aire where the flow can be injected/extracted by a con-
trolled gate.

• Fontinettes where the flow can be extracted by the lock
operation (activated by navigation rules).

Then, considering the discrete-time IDZ model, the system
can be modelled by

yi(k) = ϕi(k, τi)Θi + ei(k) i = 1, 2, 3 (27)

with

ϕi(k, τi) = (yi(k − 1), q1(k − τ1,i), q1(k − τ1,i − 1),
q2(k − τ2,i − 1), q2(k − τ2,i − 1), q3(k − τ3,i − 1), (28)

, qnq (k − τ3,i − 1))

Θi =
(
1, bi

1,1, b
i
1,2, b

i
2,1, b

i
2,2, b

i
3,1, b

i
3,2

)T

Figure 3: Scheme of the Cuinchy-Fontinettes navigation reach

Source: Authors

6. Results

6.1. Identification
The nominal values of parameters in Eq. (27) have been ob-

tained by the physical knowledge of the system and considering
a sample time Ts=5 minutes. The values of these parameters are
summarized in Tables 2, 3 and 4.

Once the nominal parameters have been computed, a fault-
free scenario has been generated by numerical model imple-
mented in the SIC (Simulation Irrigation Canals) software (Mala-
terre, 2006). SIC uses a finite difference method to solve the SV
equations implicitly. The fault-free scenario defined by the in-
put (positive) and output (negative) flow values in 6 days, based
on a realistic scenario is depicted in Figure 4. Using this fault-
free scenario and solving optimization problems (Blesa et al.,
2010; Puig and Blesa, 2013), the uncertainty in parameters has
been computed in such a way that the non-faulty data is con-
tained in the interval bounds following Eq. (2).

The uncertain bounds in parameters obtained in the identi-
fication procedure are the following

- Delay uncertainty: λg = 2 for all the transport delays
- Additive errors: σ1 = 1, 5cm, σ2 = 3cm and σ3 = 3.5cm
- Uncertainty in parameters: b1

i, j = (1 ± α1)b1,0
i, j , b2

i, j = (1 ±
α2)b2,0

i, j and b3
i, j = (1 ± α3)b3,0

i, j with α1 = 0.066, α2 = 0.027 and
α3 = 0.008

Figure 5 shows the evolution of the Cuinchy, Aire and Fonti-
nettes levels and the bound levels obtained using the interval
model.

6.2. Fault Detection
Once the interval model has been calibrated, different fault

scenarios have been simulated in order to verify the effective-
ness in fault detection using Test (4) or (7). Figure 6 shows the
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Table 2: Cuinchy level equation y1 nominal parameters

τ0
1,1

τ0
2,1 τ0

3,1 b1,0
1,1 b1,0

1,2 b1,0
2,1 b1,0

2,2 b1,0
3,1 b1,0

3,2

1 16 24 0.0063 -0.0062 0.0023 -0.0021 -0.0019 0.0018

Source : Authors

Table 3: Aire level equation y2 nominal parameters

τ0
1,1

τ0
2,1 τ0

3,1 b1,0
1,1 b1,0

1,2 b1,0
2,1 b1,0

2,2 b1,0
3,1 b1,0

3,2

16 1 8 0.0023 -0.0021 0.0047 -0.0046 -0.0028 0.0027

Source : Authors

Figure 4: Input(positive)/output(negative) flow values in the fault-free
scenario

Source: Authors

Figure 5: Levels and interval bound levels in the fault-free scenario

Source: Authors

Figure 6: Bounds of the interval residuals Γ1 (Cuinchy level residual)

Source: Authors

Figure 7: Detail of bounds of the interval residuals Γ1 (Cuinchy level
residual)

Source: Authors

evolution of the bounds of the interval residuals in the Cuinchy
level when an additive fault of -2cm has been introduced in this
sensor level i.e f1 = −0.02m at k f = 990 (i.e. at time 82h 30’).
Figure 7 depicts the details of Figure 6 around the fault time
occurrence.

Finally, Figure 8 (upper) shows the fault detection results
applying fault detection test defined in Eq. (7) to r1 and (lower)
applying this fault detection test but with the additional resid-
ual r1 2 defined in Eq. (22) in order to deal with the dead-beat
observer effect described in Section 4. As can be seen if test
(7) is directly applied to r1 , there is not persistence in the fault
indicator, whereas this problem disappear when the auxiliary
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Table 4: Fontinettes level equation y3 nominal parameters

τ0
1,1

τ0
2,1 τ0

3,1 b1,0
1,1 b1,0

1,2 b1,0
2,1 b1,0

2,2 b1,0
3,1 b1,0

3,2

24 8 1 0.0019 -0.0018 0.0028 -0.0027 -0.0042 0.0040

Source : Authors

Figure 8: Fault detection results without and with additional residual
r1 2

Source: Authors

residual is used and there is persistence in the fault indicator.

7. Conclusions

In recent years, inland navigation networks have benefited
from the innovation of the instrumentation and SCADA sys-
tems. However, before implementing automatic control strate-
gies that rely on the fault-free mode it is necessary to design a
fault diagnosis scheme. In this paper, a model-based scheme
has been proposed for the sensor level fault detection and iso-
lation in inland navigation networks. The scheme is based on
the use of analytical redundancy provided by a mathematical
model. The fault detection is implemented by a passive robust
approach based on interval methods that considers uncertainty
in parameters of the mathematical model and additive error. Fi-
nally, the proposed scheme has been successfully validated in
real scenarios using a high-fidelity simulator of a reach of the
inland navigation network located in the north of France.
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