

New Optimal Fishing Vessels Design Approach for Power - Speed Prediction

S.C. Duru ${ }^{1, *}$

ARTICLE INFO

ABSTRACT

Article history:

Received 17 August 2016; in revised form 24 August 2016; accepted 07 November 2016.

Keywords:

Fishing, Vessels, Power, Speed, Optimization.
© $\operatorname{SEECMAR|\text {Allrightsreserved}}$

1. Introduction

The regression analysis was done using Microsoft Excel program basing on main power and vessel speed and presented in figure 1 to figure 20. The vessels data for the regression taken from Lloyds register of Ships, (Soviet- Trawlers 2016), and (marintimesales 2016) are presented in Table 1 in a short form, while the regression formulas derived from them are collected in Table 3. Regression coefficients range from 0.8 to 0.99 for all the formulae presented. A total of 32 formulae are presented.

The new method of how to utilize these formulae to find the best required power for a comparative design process is presented. This is within the premises of preliminary design before the preliminary machinery weight or Light weight estimation of the vessel. The detailed power estimation based on more advanced hydrodynamics methods (Sugalski, 2014; Kleppestø, 2015; Holtrop, 1984) amongst others is used in the latter stage of vessel design. The result from this method serves to set or select the desired limits for power and speed to be achieved by the latter stage vessel design process.

[^0]Similar works exist (Duru, 1997; Brett Wilson, 1985; Watson, 1989) and (M.F.C. Santerelli, 1982) amongst others, in different perspectives. This work serves as an update as well as a new approach to solve this problem.

2. Methodolgy

The method follows the following exemplified steps:

- In the process for preliminary design presented by the author (Duru, 2016) three optimal main dimensions of projected 1000 tonnes deadweight fishing vessel was predicted. These three best comparative designs named A1, A2, A3 options respectively, are shown in row 1 to 6 and column 1 of Table 5, 6, 7, respectively.
- Calculate the power P_{1}, P_{2}, to P_{21} using the 21 respective formulae 1 to 21 give in Table 3, see column 2 of Table 5,6,7 for the three respective designs A1, A2, A3. Then select the average power $P_{\text {avg }}$ predicted for each design option
- Calculate v_{1} and v_{2} using the respective $P_{\text {avg }}$ in formula 22 and 23. See v_{1} and v_{2} of column 3 of Table 5, 6 , and 7 respectively.
- Do similarly to above step for v_{3} to v_{11} using $P_{(L)}, P_{(B)}$, $P_{(D)}$, and $P_{(T)}$ being the average power with respect to the main dimensions, to the corresponding speeds v_{3} to v_{5}, v_{6} to v_{7}, v_{8} to v_{9}, and v_{10} to v_{11} respectively shown in Table 5,6 , and 7 for each design option.
- Finally calculate the criterion power $P_{\text {crit }}$ requirement based on the power and speed criteria formula $V_{\text {crit }}$ which are derived for fishing vessel which has a regression coefficient $R^{2}=0.94185$, equation 33 and 34 respectively presented below as:

$$
\begin{align*}
P_{\text {crit }}= & 21.093 L-252.624 B+114.128 D+346.970 T \\
& +99.622 V+0.0389 L B T-179.014 \frac{L}{T}-891.651 \frac{D}{T} \\
& -89.627 \frac{B}{T}+0.1567 L B D+199.031 \frac{B}{D}-533.571 \frac{L}{B} \\
& +373.240 \frac{L}{D}+4589.493 \frac{F}{D} \tag{33}
\end{align*}
$$

and,

$$
\begin{equation*}
\text { Vcrit }=\frac{X}{\left(-2 E-06 X^{2}+0.0743 X+9.0269\right)} \tag{34}
\end{equation*}
$$

with regression coefficient $R^{2}=0.9917$.
where, $X=P_{\text {crit }}$ given above in (33).

3. Discussion and Results

The optimal best choice of projected design has to satisfy the following rules with respect to the main power $P_{(K w)}$ and speed $v_{(K n)}$:

- A, Power P should be the minimum alternative, but must have a lower value and minimum deviation from the criterion power $P_{\text {crit }}$ predicted.
- B, The average v predicted should be higher than then the criterion v. This means that power P is minimized while average speed v is maximized.

The $P_{\text {crit }}, v_{\text {crit }}$ calculated, for instance, shown in Tables 5, 6, and 7 for three respective projected vessel sample dimensions, are compared with the $V_{\text {avg }}$ and $P_{\text {avg }}$ as well as the minimum $P_{(k w)}$. The vessel that meets A and B rules is the best vessel and in our example Table 5, 6 and 7 for A1, A2, and A3 options respectively, these are the results:

Taking:

$$
\begin{equation*}
\% P_{D E V}=\frac{100 \cdot\left(P-P_{c r i t}\right.}{P_{\text {crit }}} \tag{35}
\end{equation*}
$$

Where: $P_{\text {crit }}$ calculated from equation 33 above, $P_{(K n)}$ is the design minimum power from column 3 of Table 5, 6, 7. $v_{\text {crit }}=$ v_{2}. And $v_{(K n)}$ is the design $v_{\text {avg }}$

The best option in A2 vessel, A1 is also very good choice. A3 option is no longer in the race.

Table 1: Choosing the optimal design vessel from the final result

	$P_{K w}$	$\% P_{\text {DEV }}$	$V_{K n}$	$V_{C R I T}$
A1	1135.1	-17.63	13.05	12.03
A2	1274.5	-12.73	12.63	11.99
A3	1701.9	-22.77	13.50	12.08

Further optimization method with respect to stability, and structural weight prognoses could be done between A1 and A2 to choose which one would be the best option.

4. Conclusion

This work has presented 35 regression equations based on 197 data from existing world fishing fleet for the preliminary calculation of main power P and vessel speed V of modern fishing vessels of various types. A new procedure for obtaining optimized value of P and V at the early stage of design is described with an example for main dimensions of three comparative design designated as A1, A2, and A3 for a projected vessel of 1000 tonnes deadweight. The approach presented can be used for production of ship design software for optimum preliminary design of ships in respect to main power and speed prediction.

Table 2: List of some of the fishing vessels used in the regression analysis

S/N	Name of vessel	P(kw)	LBP(m)	B(m)	D(m)	T(m)	v (kn)	LBT(m3)	LBD(m3)	B/D	L/B etc
1	"	5215	106	17	10.2	7.32	16.5	13176	18372.6	1.67	6.23
2		1825.3	56.51	15.6	6.85	6.5	14.2	5730	6038.6	2.28	3.62
3		1005.8	45.91	8	4	3.7	12	1359	1469.25	2	5.74
4	VZ10	1095.9	71.18	14	10	6.5	14	6477	9965.22	1.4	5.08
5	JAS10	89.4	8.15	3.4	1.6	1	8	27.71	44.34	2.13	2.4
6	DMX10	335.25	19.02	6.15	6.15	2.5	9	292.4	719.29	1	3.09
7	MHL10	3352.5	93.01	16	9.9	6.8	18	10119	14732	1.62	5.81
8	ASP10	596	28.07	8	6.25	6.07	10	1363	1403.68	1.28	3.51
9	RAU10	800	30.34	8.84	6.4	3.35	11	898.4	1716.38	1.38	3.43
10	DTR10	634.74	49.63	9.8	5	4.14	12	2013	2431.72	1.96	5.06
11	AQUIILA	3874	91.97	17	10.4	5.72	14.6	8944	16260.3	1.63	5.41
12	ATRIA	1280	85	15.6	9.7	5.6	15	7425.6	12862.2	1.61	5.45
13	CARINA	512	80	14.52	9.75	5.25	13	6098	11325.6	1.49	5.51
14	FOKAB	3725	80	14.14	9.75	5.36	14	6063	11029.2	1.45	5.66
			117	17.8	10.2	7.32	16.5	15234	21242.5	1.75	6.57
140	Gorizont										
147	Kerchanin	167.63	22.38	6.49	3.04	2.27	9.5	329.71	441.55	2.13	3.45
148	Kociewie	7375.5	130	20	12.6	7.4	17	19240	32760	1.59	6.5
149	Kronshtadt	1490	79.43	14	10.01	5.61	12.5	6238	11131.3	1.4	5.67
184	Fishing V	223.5	15.26	5.26	2.6	1.83	10.2	146.89	208.7	2.02	2.9
185	Fishing V	171.35	16.7	5.5	2.43	1.6	9.8	146.96	223.2	2.26	3.04
186	Kristall al	7673.5	142	22.2	13.6	7.98	17.2	25140	42872.6	1.63	6.4
187	LF RYB A	234.68	37.98	7.2	3.2	2.1	9.1	574.26	875.06	2.25	5.28
188	MRS-225	167.63	20.97	6	2.67	1.94	9	243.46	335.94	2.25	3.5
189	RB-150	119.2	24	5.5	2.5	1.84	6	242.88	330	2.2	4.36
190	Refrig Sein	167.63	22.4	6.5	3.06	2.36	9.4	343.62	445.54	2.12	3.45
191	Refrig T	167.63	24.6	5.66	2.5	1.93	10	268.73	348.09	2.26	4.35
192	Sola TR27	338.23	26.23	7.5	4	2.85	10.5	560.67	786.9	1.88	3.5
193	$\mathrm{RS}=150$	111.75	24.6	5.5	2.5	1.7	8.5	229.33	338.25	2.2	4.47
194	Storem 4	89.4	16.1	5.2	2.6	2.55	8.5	213.49	217.67	2	3.1
195	Storem 4c	89.4	16.1	5.3	2.6	2.55	8.6	217.59	221.86	2.04	3.04
196	Storem 7	186.25	19.47	5.59	3	2.6	8.8	282.98	326.51	1.86	3.48
197	Sohispan 1	465.63	25.48	7.5	5.39	3.6	10	687.96	1030.03	1.39	3.4

Figure 1: Power $P(K w)$ to Length $L(m)$ Regression

Figure 2: Power-Speed Ratio P / V to Length (m) Regression Formula

Figure 3: $\operatorname{Power}(K w)$ to $D(m), T(m), B(m), v(m)$ Regression

Figure 4: Power-Speed, Draft to length

Figure 5: Power to cubic length Regression

Figure 6: Power-Speed Ratio P / V to P Regression

Figure 8: Power $P-D, B$ to length Regression

Figure 10: Power P-Draft T, \sqrt{L} to Length L

Figure 7: Speed V to Main Power P Regression

Figure 9: Power $P /$ Beam B to Length $L(m)$ Regression

Figure 11: Power $P / V^{4 / 3}$ to L Regression

Figure 12: Power P-Draft T, \sqrt{L} to Length L

	${ }^{10} \mathbf{B}(\mathrm{~m}){ }^{20} \quad 30$

Figure 14: P / B, and P / \sqrt{L} to Beam B Regression

Figure 16: P / \sqrt{T}, and P / \sqrt{V} to Beam D Relation

Figure 13: P / \sqrt{B}, and P / \sqrt{T} to Beam B Regression

Figure 15: P / v, and P / \sqrt{B} to Beam B Regression

Figure 17: $P / v, P / B$, and P / \sqrt{L} to Beam D Regression

Figure 18: $P / \sqrt{B}, P / \sqrt{T}$, and P / \sqrt{v} to Beam T Regression

Figure 20: P / B and P / \sqrt{L} to Beam T Regression

R2 $=$ Square Correlation coefficient.
1, Length L(m) Related Main Power P(Kw) Regression Derived Equations.
Let L $=$ X1, L $=$ Length Between Perpendiculars
$R 2=0.896, P 1=0.2811 X 12+16.049 X 1-138.76$
$R 2=0.886, P 2 / T=0.0701 X 12+10.124 X 1-42.911$
$R 2=0.884, P 3=6 E-16 X 16-3 E-09 X 15+0.0065 X 13+421.35$
$R 2=0.863, P 4=6 E-16 X 16-3 E-09 X 15+0.0065 X 13-421.35$
$R 2=0.865, P 5=0.0004 X 13-0.0554 X 12+13.579 X 1-144.05$
$R 2=0.842, P 6=6.7422 \times 1-22.248$
$R 2=0.801, P 7 / L=4.5837 X 1-28.344$
2. Breadth(moulded) $B(m)$ regression Derived Equations.

Let B = X2
$R 2=0.924, P 8=22.153 X 22-150.93 X 2+365.85$
$R 2=0.863, P 9 / T=1.4795 X 22+13.972 X 2-27.73$
$R 2=0.907, P 10 / T=6.04 X 22-5.5202 X 2-19.642$
$R 2=0.923, P 11 / B=5.0457 X 22-24.999 X 2+50.175$
$R 2=0.857, P 12 / L=33.9772 X 2-156.98$
$R 2=0.826, P 13 / B=18.596 X 2-72.998$
3. DEPTH(moulded) D(m) regression Derived Equations.

Let D = X3
$R 2=0.884, P 14=59.25 \times 32-332.55 \times 2+852.41$
$R 2=0.818, P 15 / T=166 X 3-368.52$
$R 2=0.806, P 16 / L=44.45 X 3$? $78.974 X 3$
4. DESIGN DRAFT T (m) regression Derived Equations.

LET T = X4

$$
\begin{align*}
& R 2=0.896, P 17=148.37 X 42-432 X 1+409.77 \tag{17}\\
& R 2=0.884, P 18 / B=35.836 X 42-93.243 X 4+95.107 \tag{18}\\
& R 2=0.842, P 19 / T=044.228 X 42-69.608 X 4+82.639 \tag{19}\\
& R 2=0.871, P 20 / B=-1.6877 X 43+27.424 X 42-84.995 X 4+109.57 \tag{20}\\
& R 2=0.893, P 11 / L=-2.2452 X 43+40.908 X 42-129.71 X 4+161.82 \tag{21}
\end{align*}
$$

Table 4: Derived regression equation for vessel speed formulas as written in figures
FORMULAS FROM REGRESSION ANALYSIS OF 197 FISHING VESSELS DATA ON VESSELS SPEED $v(K n)$
$R^{2}=$ Square Correlation coefficient.

1, Main Power $P(K w)$ Relation with Fishing Vessels Speed $v(K n)$ Power to Speed ratio formulas.
$R^{2}=0.805, \quad v_{1}=1.9845 \cdot \ln (P)-1.5452$
$R^{2}=0.992, \quad P / v^{2}=-2 e^{-06} P 2+0.0743 P+0.0269$
2, Length $\mathrm{L}(\mathrm{m})$ Related to Main Power $\mathrm{P}(\mathrm{Kw})$ to Vessel Speed Regression formulas.
$R^{2}=0.879, \quad P / v 3=3.260 X 1+42.036$
$R^{2}=0.890, \quad P / v 4=0.0581 X 12+5.6589 X 1-43.804$
$R^{2}=0.872, \quad P / V 54 / 3=0.0038 X 12+0.8133 X 1-4.2364$
$\mathrm{X} 1=\mathrm{L}$

3, Breadth $B(m)$ Related to Main Power $P(K w)$ to Vessel Speed Regression formulas.
$R^{2}=0.847, \quad P / v 6=1.5512 X 22.3064$
$R^{2}=0.879, \quad P / v 7=23.401 X 2-127$
$\mathrm{X} 2=\mathrm{B}$
4. Depth $\mathrm{D}(\mathrm{m})$ Related to Main Power $\mathrm{P}(\mathrm{Kw})$ to Vessel Speed Regression formulas.
$R^{2}=0.892, \quad P / v 8=1.3304 X 33-15.055 X 32+119.64 X 1-162.75$
$R^{2}=0.832, \quad P / v 9=3.8034 X 31.7622$
$\mathrm{X} 3=\mathrm{D}$
5. Draft $\mathrm{T}(\mathrm{m})$ Related to Main Power $\mathrm{P}(\mathrm{Kw})$ to Vessel Speed Regression formulas.

$$
\begin{array}{ll}
R^{2}=0.872, & P / V 10=26.326 X 12-29.104 X 1+22.75 \\
R^{2}=0.887, & P / V 11=8.647 X 12-19.835 X 1+24.005 \tag{33}
\end{array}
$$

Table 5: Projected 100 tonnes deadweight fishing vessel. Design option A1 data analysis and result.

$\mathbf{0}$	$\mathbf{1 ~ A 1}$	$\mathbf{2}$	$\mathbf{3}$
1	VESSEL DATA	POWER $P($ Kw $)$	SPEED $V($ Kn $)$
2	$L(m)=53.40$	$P_{1}=1519.81$	$V_{1}=13.36$
3	$B(m)=12.47$	$P_{2}=1586.96$	$V_{2}=12.06$
4	$D(m)=7.58$	$P_{3}=1409.82$	$V_{3}=12.15$
5	$T(m)=5.18$	$P_{4}=1677.89$	$V_{4}=14.32$
6	$L / T=10.32$	$P_{5}=1709.22$	$V_{5}=13.48$
7	$D / T=1.46$	$P_{6}=1748.04$	$V_{6}=13.66$
8	$L B D=5048.58$	$P_{7}=1581.54$	$V_{7}=11.72$
9	$L B T=3446.30$	$P_{(L)}=1604.75$	$V_{8}=13.72$
10	$B / D=1.65$	$P_{8}=1928.97$	$V_{9}=12.58$
11	$L / B=4.28$	$P_{9}=1948.98$	$V_{10}=12.90$
12	$L / D=7.04$	$P_{10}=1935.66$	$V_{11}=13.55$
13	$F / D=0.32$	$P_{11}=1847.46$	$V_{(a v g)}=13.05$
14	$P(K w)=1335.16$	$P_{12}=1949.26$	$V_{\text {crit }}=12.03$
15	$V(K n)=13.05$	$P_{13}=1981.80$	
16		$P_{(B)}=1932.02$	
17	$P / V=102.31$	$P_{14}=1736.54$	
18	$P_{C R I T}=1620.85$	$P_{15}=2024.46$	
19	$P D E V=-285.69$	$P_{16}=1335.16$	
20	$\% P D E V=-17.63$	$P_{(D)}=1698.72$	
21		$P_{17}=2147.61$	
22		$P_{18}=2020.98$	
23		$P_{19}=2063.01$	
24		$P_{20}=2123.25$	
25		$P_{21}=2009.21$	
26		$P_{(T)}=2072.81$	
27		$P_{A V G}=1823.13$	

Table 6: Projected 100 tonnes deadweight fishing vessel. Design option A2 data analysis and result.

$\mathbf{0}$	$\mathbf{1}$ A1	$\mathbf{2}$	$\mathbf{3}$
1	VESSEL DATA	POWER $P($ Kw $)$	SPEED $V($ Kn $)$
2	$L(m)=48.686$	$P_{1}=1308.88$	$V_{1}=13.04$
3	$B(m)=10.986$	$P_{2}=1380.77$	$V_{2}=12.02$
4	$D(m)=7.740$	$P_{3}=1170.64$	$V_{3}=11.89$
5	$T(m)=5.022$	$P_{4}=1527.67$	$V_{3}=14.12$
6	$L / T=9.695$	$P_{5}=1431.54$	$V_{4}=13.23$
7	$D / T=1.541$	$P_{6}=1536.75$	$V_{5}=13.46$
8	$L B D=4139.85$	$P_{7}=1359.35$	$V_{6}=11.01$
9	$L B T=2686.09$	$P_{(L)}=1387.94$	$V_{7}=13.20$
10	$B / D=1.419$	$P_{8}=1381.43$	$V_{8}=12.41$
11	$L / B=4.432$	$P_{9}=1528.35$	$V_{9}=11.60$
12	$L / D=6.290$	$P_{10}=1453.71$	$V_{10}=12.92$
13	$F / D=0.351$	$P_{11}=1274.47$	$V_{(\text {avg })}=12.63$
14	$P(K w)=1274.47$	$P_{12}=1509.18$	$V_{\text {crit }}=11.99$
15	$V(K n)=12.630$	$P_{13}=1442.44$	
16		$P_{(B)}=1431.60$	
17	$P / V=100.91$	$P_{14}=1828.00$	
18	$P_{C R I T}=1460.43$	$P_{15}=2053.46$	
19	$P D E V=-186.0$	$P_{16}=1331.18$	
20	$\% P D E V=-12.732$	$P_{(D)}=1737.54$	
21		$P_{17}=1982.23$	
22		$P_{18}=1758.82$	
23		$P_{19}=1901.52$	
24		$P_{20}=1764.49$	
25		$P_{21}=1798.56$	
26		$P_{(T)}=1841.12$	
27		$P_{A V G}=1558.26$	

Table 7: Projected 100 tonnes deadweight fishing vessel. Design option A3 data analysis and result.

$\mathbf{0}$	$\mathbf{1 ~ A 1}$	$\mathbf{2}$	$\mathbf{3}$
1	VESSEL DATA	POWER $P(K w)$	SPEED $V($ Kn $)$
2	$L(m)=62.04$	$P_{1}=1939.00$	$V_{1}=13.805$
3	$B(m)=12.12$	$P_{2}=2076.91$	$V_{2}=12.07$
4	$D(m)=9.41$	$P_{3}=1970.95$	$V_{3}=12.99$
5	$T(m)=5.90$	$P_{4}=2206.63$	$V_{4}=15.367$
6	$L / T=10.52$	$P_{5}=2022.00$	$V_{5}=14.143$
7	$D / T=1.59$	$P_{6}=2336.74$	$V_{6}=15.092$
8	$L B D=7078.29$	$P_{7}=2016.78$	$V_{7}=12.141$
9	$L B T=4438.04$	$P_{(L)}=2081.29$	$V_{8}=12.62$
10	$B / D=1.29$	$P_{8}=1792.27$	$V_{9}=13.276$
11	$L / B=5.12$	$P_{9}=2118.93$	$V_{10}=13.654$
12	$L / D=6.59$	$P_{10}=1946.25$	$V_{11}=13.634$
13	$F / D=0.37$	$P_{11}=1701.84$	$V_{(a v g)}=13.50$
14	$P(K w)=1701.85$	$P_{12}=2008.23$	$V_{\text {crit }}=12.08$
15	$V(K n)=13.50$	$P_{13}=1848.42$	
16		$P_{(B)}=1902.66$	
17	$P / V=126.06$	$P_{14}=2969.59$	
18	$P_{C R I T}=2203.63$	$P_{15}=2899.10$	
19	$P D E V=-501.79$	$P_{16}=2001.87$	
20	$\% P D E V=-22.77$	$P_{(D)}=2623.52$	
21		$P_{17}=3025.73$	
22		$P_{18}=2759.19$	
23		$P_{19}=2942.79$	
24		$P_{20}=2620.13$	
25		$P_{21}=2831.07$	
26		$P_{(T)}=2835.78$	
27		$P_{A V G}=2287.35$	

References

Brett Wilson, W., 1985. Fishing vessel design curves. International Conference of Design Construction and Operation of Commercial Fishing Vessels Proceedings 1985 Florida USA.
Duru, S., 1990. A proposal for basic freeboard for ocean- going ships. London IMO Doc Slf 34/inf submitted by delegation of Poland to UNO IMO.
Duru, S., 1997. Preliminary design of modern fishing vessels- fact from existing vessels. Budownictwo Okretowe 2 Poland., pp 54-56.
Duru, S., 2016. Lightship component masses in preliminary design examplified for fishing vessel. International Journal of Scientific and Engineering Research 7 (11).
Fishing Vessel for Sale, 2016. URL: http://www.maritimesales.com/JRD10.htm
Holtrop, J., 1984. A statistical re-analysis of resistance and propulsion data. International Shipbuilding Progress Vol 31 (No.363), pp 272-276.
Kleppestø, K., 2015. Empirical prediction of resistance of fishing vessels. Mas-
ter Degree Thesis in Marine Technology. Norwegian University of Science and Technology, Dept. of Marine Technology.
Lutsenko Valeriy, 2016. Fishing fleet of communist and post-communist countries.
URL: http://soviet-trawler.narod.ru/
M.F.C. Santerelli, 1982. Preliminary determination of main characteristics of fishing vessels. Lecture Note for Sixth Wegemt School, Fishing Vessel Technology Madrid.
Parson, M., 2009. Application of optimization in early stage ship design. Ship Science and Technology Ciencia and Tecnologia de Buques COTECMAR. Columbia Vol 3 (No.5).
URL: www. shipjournal.co
Sugalski, K., 2014. Fishing vessel hull design and towing resistance calculation by cfd methods. Scientific Journals Zeszyty Naukowe Maritime University of Szczecin Poland Vol 40 (No.112), pp 27-30 ISSN1733-8670.
Watson, D., 1989. Practical ship design. Elsevier Ocean Engineering Books Series ISBN:0-0804299-8 Netherland.

[^0]: ${ }^{1}$ Senior Lecturer and Departmental co-ordinator at the Mechanical/Marine Engineering Department, Niger Delta University, Amassoma, Bayelsa State, Nigeria.
 *Corresponding author: S.C. Duru E-mail address: drscduru@ gmail.com.

