
Vol XXI. No. II (2024) pp 187–195

ISSN: 1697-4840, www.jmr.unican.es

JOURNAL OF MARITIME RESEARCH

Lightweight Unsupervised Model for Anomaly Detection on
Microcontroller Platforms

Le Dang Khanh1, Nguyen Xuan Long2,∗

ARTICLE INFO ABSTRACT

Article history:
Received 24 Dec 2023;
in revised from 18 Jan 2023;
accepted 31 Mar 2024.

Keywords:
Maritime safety, Equipment
maintenance, Anomaly Detection;
Unsupervised Learning; TinyML;
Autoencoder.

Maritime operations are contingent upon the efficiency of the equipment operating on the ship. This
bears a considerable impact on not only the overall effectiveness of the vessel, but notably on the safety
standards too. An essential cog in this machine is the establishment of effective anomaly detection,
which underscores predictive maintenance of the machinery and therein, drastically reduce machine
breakdown costs. To this end, this study introduces a groundbreaking approach, utilizing unsuper-
vised learning focused on a low-cost microcontroller unit (MCU) to detect equipment abnormalities
via vibration signals. The concentration of the study was towards outliers in vibration signals occur-
ring in multiple machinery, with fans being the key point of our research. We collected an array of
accelerometer data using a microcontroller, which was meticulously mounted on a fan for accurate
readings. Exploring further, a robust, lightweight unsupervised learning model was developed, trained,
and evaluated for precise anomaly detection. The performance of multiple autoencoder architectures
with varying complexities was tested and analyzed by measuring the area under the receiver operat-
ing curve (AUC), promising active predictive maintenance. The denoising convolutional autoencoder
stood out, achieving an impressive AUC of 0.993. Notably, this high-performing model only requires
41 parameters and 3.77 KB of RAM on an Arduino, proving its suitability for deployment on resource-
limited edge devices. Compared to previous studies, our models deliver superior anomaly detection
while using fewer parameters and computational resources. This research underscores the potential of
ultra-lightweight unsupervised learning models to enable accurate and efficient predictive maintenance
through on-device anomaly detection with microcontrollers.

© SEECMAR | All rights reserved

1. Introduction.

Spotting anomalies, also known as outliers [1], is a key as-
pect of data analysis in many fields. The aim is to find rare
or unexpected observations that stand out from the normal pat-
terns in a dataset. These anomalies can be caused by various

1Faculty of Marine Engineering, Vietnam Maritime University, Haiphong
180000, Vietnam. Tel. (+84) 941982988. E-mail Address: ledan-
gkhanh@vimarul.edu.vn.

2Faculty of Navigation, Vietnam Maritime University, Haiphong 180000,
Vietnam. Tel. (+84) 941982988. E-mail Address: nguyenxuan-
long@vimaru.edu.vn.
∗Corresponding author: Nguyen Xuan Long. Tel. (+84) 941982988. E-

mail Address: nguyenxuanlong@vimaru.edu.vn.

factors, such as errors in data collection, fraudulent activities,
system malfunctions, or unforeseen events. Identifying these
outliers accurately is highly beneficial, as it allows organiza-
tions to take preemptive measures against risks, improve oper-
ational efficiency, and make better-informed decisions.

With the rapid expansion of data and the increasing com-
plexity of modern systems, traditional rule-based methods for
anomaly detection have become obsolete. As a result, there has
been a paradigm shift towards using advanced techniques, espe-
cially those based on machine learning, to uncover hidden pat-
terns and detect anomalies. Machine learning algorithms excel
at autonomously learning and adapting from historical data, al-
lowing them to identify anomalies that aren’t easily defined by
fixed rules. This data-driven approach has shown exceptional
results across various fields, including finance, cybersecurity,

L.D. Khanh & N.X. Long. / Journal of Maritime Research Vol XXI. No. II (2024) 187–195 188

healthcare, and industrial processes [2].
In recent years, a surge of research has been dedicated to

employing artificial intelligence for monitoring and controlling
manufacturing processes. The goal is to identify measurements
or patterns that deviate from the norm, signaling potential de-
fects or anomalies. For example, Jatesiktat et al. [3] intro-
duced an unsupervised method for detecting anomalous move-
ments using autoencoder reconstruction error, achieving over
90% accuracy in identifying anomalies from raw data collected
by a wrist-mounted inertial measurement unit (IMU). This tech-
nique could be a game-changer for automatic upper limb re-
habilitation assessments. Similarly, Sadhu et al. [4] devel-
oped innovative deep Convolutional Neural Networks (CNNs)
and Long Short-Term Memory Neural Networks (LSTMs) for
real-time detection and classification of drone misoperations
based on sensor data, demonstrating high accuracy in both sim-
ulations and practical experiments. Additionally, Jiang et al.
[5] proposed a fault detection strategy for wind turbines using
a denoising autoencoder (DAE) alongside multivariate sensor
data, including vibration, temperature, pressure, and electrical
measurements. By leveraging the DAE model to analyze this
data, their approach effectively identifies and diagnoses faults
in wind turbines, showcasing the power of AI in enhancing in-
dustrial processes.

TinyML offers remarkable benefits over traditional machine
learning methods. By enabling on-device inference, it reduces
latency and lessens reliance on network connectivity, while also
addressing privacy and security concerns. TinyML’s small model
sizes and low computational needs make it ideal for resource-
limited microcontrollers and IoT devices, resulting in cost sav-
ings and enhanced efficiency in real-time decision-making. For
instance, Vitolo, Paola, et al. [6] introduced a low-power anomaly
detection and classification system for predictive maintenance
based on vibration monitoring. Their approach uses a Convolu-
tional Auto-Encoder (AE) and a hybrid hardware/software Con-
volutional Neural Network (CNN) to achieve top-tier perfor-
mance and accuracy. Similarly, Sampaio et al. [7] demonstrated
a methodology for predicting industrial equipment failure times
using TinyML techniques, specifically an Artificial Neural Net-
work (ANN) based on vibration data, showcasing the potential
of efficient predictive maintenance systems in resource-constrained
settings. Furthermore, M. Lord and A. Kaplan et al. [8] ex-
plored the use of machine learning on an embedded microcon-
troller to detect mechanical anomalies in a top-load washing
machine. They employed autoencoder and variational autoen-
coder neural network models, implemented with TinyML on an
Arduino Nano microcontroller, to accurately detect unbalanced
laundry loads in real time.

The goal of this research was to design a lightweight un-
supervised learning model for real-time anomaly detection in
various signal types, capable of running on a low-cost micro-
controller. A test setup featured a fan with and without an
anomaly component, equipped with an Arduino Nano 33 BLE
microcontroller mounted on the motor. This configuration en-
abled the collection of vibration data under both normal and
abnormal load conditions. Different unsupervised neural net-
work models, varying in architecture and size, were trained

on this data to detect anomalies. The key objective was to
find a model that delivered high accuracy while maintaining a
compact memory footprint, making it suitable for microcon-
troller deployment. Remarkably, the proposed models outper-
formed prior methods, such as those by Lord and Kaplan et al.
[8], in terms of detection performance and resource efficiency.
The top-performing model was selected for deployment on the
edge device, demonstrating the feasibility of real-time predic-
tive maintenance through on-device machine learning within
constrained resources.

2. Proposed Method.

2.1. Experimental Setup.

The proposed method consists of three key steps: end-device
sampling, model generation, and application development. As
illustrated in Figure 1, a sensor captures data from the equip-
ment, which then undergoes preprocessing techniques like data
normalization, missing value imputation, and feature selection
to ensure quality [9]. To achieve high accuracy in anomaly
identification, an unsupervised neural network is constructed
using the TensorFlow Framework and trained with the processed
data. It’s important to note that smaller model sizes result in
faster inference times [10].

Figure 1: The deployment of the proposed TinyML-based sys-
tem.

Source: Authors.

Figure 2: Experimental setup for collecting data.

Source: Authors.

Post-training, the model is optimized with TensorFlow Lite,
an advanced inference framework designed for executing ma-
chine learning algorithms on resource-constrained devices [11].
This optimization involves techniques like parameter quantiza-
tion and pruning to minimize model size and inference time.
The fewer data and training epochs required, the lower the de-
velopment cost. Finally, the optimized model is converted into

L.D. Khanh & N.X. Long. / Journal of Maritime Research Vol XXI. No. II (2024) 187–195 189

C++ and header files for deployment on a low-cost microcon-
troller. The comprehensive and open embedded ecosystem al-
lows for easy customization of different applications, showcas-
ing the method’s versatility and efficiency.

In this study, data collection was carried out using a setup
involving a compact fan with an anomaly component attached
to one of its blades. The Arduino Nano 33 BLE microcontroller,
mounted on the fan’s motor, recorded vibration measurements
from the accelerometer. Data was collected over a 10-minute
duration for each experiment, repeated four times with different
fan directions to create a dataset of normal operation. Anoma-
lous data was generated by attaching a small stick of glue to
one blade and recording for another 10 minutes, as illustrated
in Figure 2.

We chose the Arduino Nano 33 BLE Sense as our target mi-
crocontroller unit (MCU). This board comes equipped with an
accelerometer, a gyroscope, and a magnetometer, each offering
3-axis resolution. The accelerometer operates at a sample rate
of 119.00 Hz, meaning it collects a sample every 8.4 millisec-
onds. This high sampling rate ensures precise vibration data
capture, crucial for effective anomaly detection.

2.2. Dataset preparation.

Normal data was collected by observing a balanced fan op-
erating at low and medium speeds. Abnormal data was gathered
by adding weight to the fan blades. After the collected data had
been carefully cleaned and prepared, the normal data was di-
vided into three sets: 80% for training, 10% for validation, and
10% for testing. The testing data set consisted of a combina-
tion of normal and abnormal data points that had been selected.
Figure 3a displays 3-axis accelerometer data measured from the
fan running normally. Figure 3b shows 3-axis accelerometer
data that was recorded for an attached hot stick glue, indicating
abnormal fan operation.

In the data preprocessing phase, we employed a sliding win-
dow approach to segment the accelerometer readings into fixed-
size frames. The window length (W) was set to 119 samples,
aligning with the accelerometer’s sampling frequency. This
configuration ensures each frame encapsulates one complete
cycle of readings. As depicted in Figure 3, the sliding win-
dow method unveils temporal patterns in the data that might
not be apparent from individual samples alone. By dividing
the sensor outputs into overlapping segments (i.e., O = 0%,
25%, 50%, 75%), with O is overlap area scale, we can examine
short sequences of adjacent readings and their dynamics over
time. This approach provides crucial context for distinguish-
ing between normal and anomalous operations based on subtle
deviations in vibration profiles. Moreover, using overlapping
windows effectively increases the training dataset size by in-
corporating all segments of the original readings, enhancing the
model’s learning capability.

More importantly, the frame-based representation enhances
our ability to extract features pertinent to anomaly detection.
Neural networks can learn characteristic patterns within each
window directly from the data, eliminating the need for manual
feature engineering. This data-driven approach allows for the

Figure 3: The example for normal and abnormal samples.

Source: Authors.

discovery of potentially significant but previously unknown in-
dicators of anomalies. Compared to analyzing individual sam-
ples, applying sliding windows to the accelerometer outputs en-
ables better capture of timeseries behavior and uncovers subtle
differences that may indicate underlying mechanical faults or
load imbalances. Overall, this technique amplifies the predic-
tive capabilities of our models, making them more effective in
identifying anomalies.

To increase the robustness of our models, we augmented
the training data by introducing random noise. This simulates
real-world sensor noise that may be present during deployment.
Gaussian white noise scaled between 0 and 0.1 was added to
each sample to represent disturbances. The Gaussian noise was
generated.

Figure 4: The example for normal and abnormal samples after
adding noise.

Source: Authors.

using the equation:

N(0, σ) = σ × randn(0.1) (1)

where σ is the standard deviation set to 0.1, and produces
a random normal value. By incorporating noise in this con-
trolled manner, the models were exposed to a diverse set of pat-
terns during training to improve flexibility while maintaining

L.D. Khanh & N.X. Long. / Journal of Maritime Research Vol XXI. No. II (2024) 187–195 190

the underlying data structure. This also helped address overfit-
ting and enforced a degree of noise resilience to more closely
mimic practical conditions. Overall, this noise augmentation
enhanced the robustness and generalization of the anomaly de-
tection models.

To ensure consistency across the different features in our
dataset, we applied min-max scaling to normalize the data in
each dimension. Min-max scaling rescales the data values to
fall within a specific range, which is often between 0 and 1.
This process facilitates modeling and training by bringing all
features onto a comparable numeric scale.

Z =
X − µ
σ

(2)

where Z is normalized data, X ∈ Rm×n is input, in this work m
is 119 and n is 3, µ is mean value and σ is the standard devi-
ation. By doing so, we create a standardized representation of
the data as depicted in Figure 4 that facilitates further analysis
and modeling.

2.3. Proposed Methods.
2.3.1. Autoencoder.

An Autoencoder (AE) is a type of neural network that is
specifically designed to learn representations of input data with
a lower dimensionality. Figure 5 illustrates the structure of an
autoencoder, which comprises two components: an encoder and
a decoder. The encoder takes the input data and transforms
it into a compressed, low-dimensional internal representation
(also known as a bottleneck). Conversely, the decoder takes this
low-dimensional representation and reconstructs it back into
output data. It is important to note that the number of neurons
in the output layer of the autoencoder must match the number
in the input layer. In most cases, the output is referred to as the
reconstruction because the autoencoder aims to reconstruct its
input as the output.

In particular, autoencoders learn a map from the input to
itself through a pair of encoding and decoding phases as shown
in Equation 3

X̄ = D(E(X)) (3)

where X ∈ Rm×n is the input data, E is an encoding map from
the input data to the hidden layer, D is a decoding map from the
hidden layer to the output layer, and X¯ is the recovered version
of the input data. The idea is to train E and D to minimize the
difference between X and X¯.

An autoencoder can be viewed as a solution to the following
optimization problem:

min
E,D

∑
Lrec(X, X) (4)

A common choice for the reconstruction error is the mean-
squared error (MSE):

Lrec(X, X̄) = LMS E(X, X̄) =
∥∥∥X − X̄

∥∥∥2 (5)

An autoencoder can consist of multiple hidden layers, re-
ferred to as a stacked autoencoder or deep autoencoder. In-
creasing the number of hidden layers can enhance its learning

Figure 5: Architecture of Autoencoder Model.

Source: Authors.

capabilities. However, there is a drawback to making the au-
toencoder overly powerful. A highly complex autoencoder may
excellently reconstruct the exact training data but struggle to re-
construct data that it has not encountered before. In such cases,
the model is essentially memorizing rather than truly learning.
To address this issue, a simple technique is to restrict the size
of the internal representation layers, resulting in an incomplete
network. This approach compels the model to focus on learning
important features from the input data, enabling it to effectively
reconstruct unseen data.

2.3.2. Denoising Autoencoder.

A Denosing Autoencoder (DAE) is trained to reconstruct
the unperturbed data sample from an input sample that has been
subjected to noise [12, 13]. This results in more robust and
perturbation-invariant representations. The most commonly used
noise is additive Gaussian noise, i.e.: X̃ = X + ε, with ε ∼
N(0, σ2), for a small value. Thus X¯ in Equation 3 becomes
X̄ = D(E(X̃)).

Our first Denoising Autoencoder model, which uses only
a Dense layer, consists of six layers. The encoder part of the
model comprises Dense layers with 8, and 4 neurons, while
the decoder part mirrors this architecture in reverse. The la-
tent space, which serves as an intermediate representation of the
data, has a number of units is 2. Meanwhile, the second model
uses only one Conv1D layer in both the encoder and decoder
for Convolutional AE, which made the number of parameters
decrease significantly, as described in Table 1.

The input to our autoencoder model is the noisy accelerom-
eter data (x, y, z). The encoder component learns to compress
the three-dimensional input data into the lower-dimensional la-
tent space, while the decoder component learns to reconstruct
the original input (x, y, z) from the latent space. To facilitate ef-
ficient computation, we chose the Rectified Linear Unit (ReLU)
activation function for every layer, except the last layer of the
decoder. ReLU is known for its computational speed compared
to other activation functions. We opted for the Adam optimizer
and used the mean square error (MSE) as the loss function.

L.D. Khanh & N.X. Long. / Journal of Maritime Research Vol XXI. No. II (2024) 187–195 191

Table 1: Detailed setting and parameters of Conv1D Autoen-
coder.

Source: Author.

2.3.3. Variational Autoencoder.
A Variational Autoencoder [14, 15] assumes a latent vari-

able model where a latent variable z causes the observation x,
facilitating a lower bound of the probability of a data sample
with

log p(x) ≥ −DKL(q(z|x)||p(z)) + Eq(z|x)[log p(x|z)] (6)

which is often termed the Evidence Lower Bound (ELBO).
Here p(z) is the prior distribution of the latent variable, q(z|x)
is the approximate inference model, and p(x|z) is the generative
model. By maximizing the ELBO, the probability distribution
approximates the true data distribution and enables a probabil-
ity estimate for a data sample. VAEs parameterize q(z|x) and
p(x|z) by neural networks and for p(z) and p(x|z) assume diag-
onal Gaussian distributions:

q(z|x) = N(z; fµ,θ1 (x), fσ,θ2 (x)2),
p(x|z) = N(x; gµ,γ(z), c(z)2) (7)

where fµ, fσ, and gµ are neural networks with parameters
θ1, θ2 and γ respectively and c is often chosen as constant.
In analogy to AEs f is called the encoder and g is called the
decoder. The often-used formulation for VAE training is:

min
θ1,θ2,γ

∑
x

DKL(N(fµ,θ1 (x), fσ,θ2 (x)2)||N(0, 1)) + Lrec(x, gµ,γ(z̃))

(8)
with z̃ being sampled from N(fµ,θ1 (x), fσ,θ2 (x)2) using the

reparametrization trick [15, 16], and MSE is chosen for Lrec.
Our VAE model has two hidden layers in both the encoder

and decoder with a number of units equal to 8 and 4, the mean
vector, standard deviation vector, and sampled la-tent space were
created from a Dense layer having 2 neurons.

2.3.4. Attention Autoencoder.
The Attention Autoencoder (AE) is a variant of the tradi-

tional autoencoder architecture that incorporates attention mech-
anisms [16]. Attention mechanisms have been widely success-
ful in natural language processing tasks and computer vision,
and their integration into autoencoders aims to enhance the mo-
del’s ability to capture and focus on important features in the
input data.

The attention mechanism, when introduced into the autoen-
coder, allows the model to assign different importance weights
to different parts of the input sequence during the encoding and
decoding processes.

The input sequence is transformed into three sets of vec-
tors: query, key, and value. These transformations allow the
model to acquire meaningful representations tailored to the spe-
cific task being addressed. Subsequently, attention scores are
computed by measuring the likeness between each query and
key pair, typically through dot product operations. This com-
putation captures the nuanced relationships between elements
within the sequence.

Figure 6: Architecture of Variational Autoencoder.

Source: Authors.

Following this, attention scores are normalized across the
sequence dimension using a softmax function, resulting in at-
tention weights. These weights indicate the relative importance
of each value vector in relation to its corresponding query, en-
abling the model to focus on pertinent segments of the input
sequence. Finally, the attention weights are employed to weigh
the value vectors, resulting in a weighted summation that ag-
gregates information across the input sequence. The output of
the attention layer was computed as in Equation 9.

O = so f tmax
(
Q · KT

)
· V (9)

where O is the output, Q is the query matrix, K is the key
matrix and V is the value matrix.

Our architecture incorporates a single Conv1D layer in both
the encoder and decoder components. The attention mecha-
nism is utilized to form the latent space in the model. The
model is compiled with the Adam optimizer and mean squared
error (MSE) loss, which is common for autoencoder-based re-
construction tasks.

L.D. Khanh & N.X. Long. / Journal of Maritime Research Vol XXI. No. II (2024) 187–195 192

Table 2: Detailed setting and parameters of Variational Autoen-
coder.

Source: Authors.

2.3.5. Transformer Autoencoder.
In a traditional autoencoder, the encoder compresses the in-

put data into a fixed-size representation, and the decoder recon-
structs the input from this representation. Transformers, on the
other hand, use self-attention mechanisms to weigh different
parts of the input sequence dynamically, allowing the model to
focus on relevant information at each step of processing.

The encoder comprises either a single or multiple attention
- encoder blocks. Each attention encoder block applies self-
attention to the input sequence, followed by residual connec-
tions. After processing through the attention blocks, the output
is passed through a series of dense layers (multi-layer percep-
tron or MLP) to further refine the representations. The final
output is generated by a dense layer with the same dimension-
ality as the input sequence. Our encoder architecture comprises
three attention-encoder blocks, while the decoder consists of
three Dense layers with ReLU activation, followed by a final
layer that is a Dense layer without activation.

2.4. Evaluation.

For the evaluation of our anomaly detection model, predic-
tion accuracy is not enough, because a model that was trained
only with normal data and has high accuracy may not perform
well when classifying anomalous data. Such a model may mis-
classify normal data as anomalous (false positive - FP) or anoma-
lous data as normal (false negative - FN). Therefore, Area Un-
der Curve (AUC) provides better metrics than accuracy for anomaly
detection applications. AUC is computed from Sensitivity which
has another name for True Positive Rate (TPR), which is com-
puted by taking the sum of True Positive (TP) and True Nega-
tive (TN), and 1-Specificity which has another name for False
Positive Rate (FPR).

Accuracy =
(T P + T N)

(T P + FP + T N + FN)
(10)

Sensitivity tells us what proportion of the positive class got
correctly classified FPR tells us what proportion of the negative
class got incorrectly classified by the classifier.

S ensitivity(T PR) =
T P

(T P + FN)
(11)

FPR =
FP

(T N + FP)
(12)

3. Results and Discussion

The results of the above-discussed model are presented in
this section. Every model was trained with 100 epochs with
a batch size equal to 16, the optimizer was set to Adam, and
the learning rate was 0.01. The model was trained on a PC In-
tel(R) Core(TM) i3-1005G1 CPU @ 1.20GHz 1.19 GHz, RAM
20 GB, 64-bit Win 11. Figure 7 shows the reconstruction and
reconstruction error of one example. As expected, the recon-
struction error of abnormal data is higher than the normal one.
The reconstruction of abnormal data wasn’t reconstructed back
to the same as input, as shown in Figure 7b.

Figure 7: Reconstruction data and reconstruction error.

Source: Authors.

Figure 8: Histogram of reconstruction error.

Source: Authors.

In Figure 8, the histogram of reconstruction errors for the
six models is illustrated. These models were trained on a dataset
containing 75% overlap between normal and abnormal sam-
ples. Notably, the autoencoder models employing Conv1D and

L.D. Khanh & N.X. Long. / Journal of Maritime Research Vol XXI. No. II (2024) 187–195 193

Conv2D architectures exhibit superior performance, showcas-
ing a clear distinction between the distribution of normal and
abnormal data. On the other hand, the remaining models, in-
cluding the Attention model, display a closer proximity be-
tween the distributions of normal and abnormal data. In fact,
in the Attention model, there is an observable overlap between
the two distributions.

Figure 9: Comparing the Receiver Operating Characteristic
Curve (ROC) of 6 methods: Dense AE, Variational Autoen-
coder (VAE), Conv1D AE, Conv2D AE, Attention AE and
Transformer AE.

Source: Authors.

Table 3 presents a comparison of AUC scores among vari-
ous anomaly detection models applied to fan vibration data This
comparison includes the method introduced by Lord and Ka-
plan et al. [8] and our proposed models, evaluated across dif-
ferent degrees of overlap between normal and abnormal data.
Despite

Table 3: Comparing Area Under Curve (AUC) of each method.

Source: Authors.

the smaller parameter count in the previous method, which con-
siders each sample point as input, it did not yield satisfactory

results in our study. The most compact model, Conv1D AE,
containing 41 parameters, achieved the best AUC score across
all models when trained on data with a 75% overlap. However,
some models demonstrated suitable AUC scores even with a
reduced overlap space.

Conclusions.

In this study, we developed and evaluated several lightweight
unsupervised learning models for vibration-based anomaly de-
tection on a microcontroller. A key goal was to create models
that achieved high accuracy while maintaining a compact size
suitable for resource-constrained edge devices.

Our results demonstrate that convolutional autoencoders are
well-suited for this application, outperforming previous archi-
tectures in terms of anomaly detection performance. Specifi-
cally, the Conv1D autoencoder achieved the best AUC score of
0.993 when trained on data with a 75% overlap between nor-
mal and anomalous classes. Crucially, it accomplished this us-
ing only 41 parameters – quite suitable for low-memory edge
devices.

By framing the accelerometer data with overlapping sliding
windows, our models were able to better learn characteristic
patterns over time compared to considering each sample inde-
pendently. This enhanced their ability to distinguish between
normal and anomalous vibration profiles. Noise augmentation
during training also improved the robustness and generalization
of the models.

Real-time testing validated the suitability of the Dense au-
toencoder for on-device predictive maintenance applications. It
detected anomalies within about 21 ms using just 3.77KB of
RAM on the Arduino microcontroller. Overall memory usage
of our models was consistent with the low-resource constraints
of edge devices.

While this initial study focused on a single fan motor, the
approach shows promise for wider industrial machinery. Future
work involves collecting data from diverse equipment, optimiz-
ing model compression further, and evaluating performance un-
der variable operating conditions over longer periods. Nonethe-
less, these findings indicate convolutional autoencoders enable
accurate and efficient anomaly detection for predictive mainte-
nance through tiny machine learning at the network edge.

References.

[1] Sonali B Wankhede. “Anomaly detection using machine
learning techniques”. In: 2019 IEEE 5th International Confer-
ence for Convergence in Technology (I2CT). IEEE. 2019, pp.
1–3.

[2] Ramon Sanchez-Iborra and Antonio F Skarmeta. “Tinyml-
enabled frugal smart objects: Challenges and opportunities”.
In: IEEE Circuits and Systems Magazine 20.3 (2020), pp. 4–
18.

[3] Prayook Jatesiktat and Wei Tech Ang. “Unsupervised
anomalous movement detection using autoencoder reconstruc-
tion error”. In: Proceedings of AUN/SEED-NET Regional Con-
ference on Computer and Information Engineering. 2016.

L.D. Khanh & N.X. Long. / Journal of Maritime Research Vol XXI. No. II (2024) 187–195 194

Figure 10: Confussion charts for six proposed models.

Source: Authors.

[4] Vidyasagar Sadhu, Saman Zonouz, and Dario Pompili.
“On-board deep-learning-based unmanned aerial vehicle fault
cause detection and identification”. In: 2020 ieee international
conference on robotics and automation (icra). IEEE. 2020, pp.
5255–5261.

[5] Guoqian Jiang et al. “Wind turbine fault detection us-
ing a denoising autoencoder with temporal information”. In:
IEEE/Asme transactions on mechatronics 23.1 (2017), pp. 89–
100.

[6] Paola Vitolo et al. “Low-power detection and classifi-
cation for in-sensor predictive maintenance based on vibration
monitoring”. In: IEEE Sensors Journal 22.7 (2022), pp. 6942–
6951.

[7] Gustavo Scalabrini Sampaio et al. “Prediction of motor
failure time using an artificial neural network”. In: Sensors
19.19 (2019), p. 4342.

[8] Mansoureh Lord and Adam Kaplan. “Mechanical Anomaly
Detection on an Embedded Microcontroller”. In: 2021 Inter-
national Conference on Computational Science and Computa-
tional Intelligence (CSCI). IEEE. 2021, pp. 562–568.

[9] Salvador Garc´ıa et al. “Big data preprocessing: meth-
ods and prospects”. In: Big Data Analytics 1.1 (2016), pp.
1–22.

[10] Alessandro Montanari et al. “ePerceptive: energy re-
active embedded intelligence for batteryless sensors”. In: Pro-
ceedings of the 18th Conference on Embedded Networked Sen-
sor Systems. 2020, pp. 382– 394.

[11] Robert David et al. “Tensorflow lite micro: Embed-
ded machine learning for tinyml systems”. In: Proceedings of
Machine Learning and Systems 3 (2021), pp. 800–811.

[12] Pascal Vincent et al. “Stacked denoising autoencoders:
Learning useful representations in a deep network with a local
denoising criterion.” In: Journal of machine learning research
11.12 (2010).

[13] David Zimmerer et al. “Context-encoding Variational
Autoencoder for Unsupervised Anomaly Detection– Short Pa-
per”. In: arXiv preprint arXiv:1907.12258 (2019).

[14] Diederik P Kingma and Max Welling. “Auto-encoding
variational bayes”. In: arXiv preprint arXiv:1312.6114 (2013).

[15] Danilo Jimenez Rezende, Shakir Mohamed, and Daan

L.D. Khanh & N.X. Long. / Journal of Maritime Research Vol XXI. No. II (2024) 187–195 195

Wierstra. “Stochastic backpropagation and approximate infer-
ence in deep generative models”. In: International conference
on machine learning. PMLR. 2014, pp. 1278–1286.

[16] Ariyo Oluwasanmi et al. “Attention autoencoder for
generative latent representational learning in anomaly detec-
tion”. In: Sensors 22.1 (2021), p. 123.

