

Mathematical Applications in Maritime Industry: An Overview

Manivannan M.^{1,2,*}, Gokulanathan A. Jacobo^{1,3}, Viswanathan S.^{1,4}, Ganesan Velayutham^{1,5}

ARTICLE INFO

Article history:

Received 16 Dec 2024;
in revised from 24 Jan 2025;
accepted 05 Mar 2025.

Keywords:

CFD, Fuzzy Logic, Optimization,
Mathematical Modelling, Autonomous
Vessels.

© SEECMAR | All rights reserved

ABSTRACT

This research article investigates the importance and usage of different fields of mathematics in maritime industry and how mathematics help streamline processes, improve safety and aid in bettering the decision-making processes. The author reviews, lists and showcases the importance of the different fields of mathematics such as algebra, differential equations, computational fluid dynamics (CFD) and fuzzy logic in maritime area. Also, how mathematics shapes, design and construction of a ship, navigation, and shipping logistics. The application of mathematics assists in the building of models of the more complex maritime systems, and aids in the balancing of safety and efficiency of operations in this era. The multi-layered application of mathematics in the shipping industry, makes the study of the mathematics in the industry a multi-faceted form of study.

1. Introduction.

Considering that more than 70% of the Earth is covered with seas, that oceans separate continents, and that areas are divided into two thousand major islands, there can be no doubt as to maritime or fluvial transport being one of the most important ways for the movements of people with a wealth of goods. This mode of transport has contributed to human growth and achievement through the centuries, encouraging the development of various fields such as commerce, economy, technology, and especially the maritime industry, which is our focus on this article. Therefore, the ship design has always been a matter of concern for our humanity. Since the first time humans

left land in boats, many designers have answered the following questions? Are there knowledge or tools that can help me to design my boat way to make it as fast and safe as possible? [1, 3]

This question of curious interest is actually about who fitted the boat out for the pharaoh 3000 or so years before the birth of Jesus Christ, akin to the question of who is designing the new catamaran for the next America's Cup. Well luckily those centuries helped us gain a lot of knowledge about marine engineering with different ranges of ways and methods that would help almost every boat designer in their fields. More importantly, mathematics plays significant role in the integration of mathematical methods and solving techniques, as it is analytical, numerical, or experimental, related to resolving physical issues and solving practical problems. Mathematics is now a tool of the trade, a vital component of science that is being used in almost every part of human endeavour. Because Every branch of mathematics has its special applications related to different fields of work [1,3,4].

More than half of the world space is covered with maritime related activities like ship construction, ship stability, and ship navigation. Mathematics plays essential role when it comes to this. Every single branch of mathematics is applied differently to the respective field. In the maritime industry, mathematics helps to study how to achieve more efficient ship design, improve navigation safety, and develop efficient operation plans.

¹Indian Maritime University, A Central University under the Ministry of Ports, Shipping and Waterways, Government of India, Chennai Campus, Chennai - 600119.

²Faculty of School of Nautical Studies, Tel. (+91) 6383889373. E-mail Address: manivannan.mathi91@gmail.com.

³Faculty of School of Nautical Studies, Tel. (+91) 9976283393. E-mail Address: agokulanathan@gmail.com.

⁴Associate Professor of School of Nautical Studies, Tel. (+91) 9442814297. E-mail Address: viswanathans@imu.ac.in.

⁵Associate Professor of School of Nautical Studies, Tel. (+91) 8939272095. E-mail Address: gvelayutham@imu.ac.in.

*Corresponding author: Manivannan M. Tel. (+91) 6383889373. E-mail Address: manivannan.mathi91@gmail.com.

The staff we have trained in complex information analysis and also in making decisions within uncertain conditions. Also in resource management, one can observe that mathematics models are key to putting in place control systems for autonomous ships and sustainability, which in turn allows for better resource use. In the end, what we are after is strong math skills, which will, in turn support other elements of the marine sector as they grapple with the issues the industry is seeing play out. [4,6].

2. Algebra and Number Theory in Maritime Applications.

In a shipping system, there is a great deal that requires in-depth algebra and number theory, which includes architecture design and ship operation logistics as well as pathing and efficiency. Our sea-related fixes revolve around these mathematical domains [2].

In ship stability, mathematical equations significant role. Using these equations, engineers figure out where the center of gravity and buoyancy sit, which is very crucial. Therefore, vessels can bounce back upright when waves hit. These calculations show how weight spread connects to boat shape along with how much water gets pushed aside [4].

Ships run better when they use less fuel and pack more stuff onboard. Figuring out of ship fuel needs can work through basic math lines that connect data points. What affects fuel burn comes down to several clear factors we can measure. Handling how the air and sea drag impacts engines ties into school-style math equations. Because of different situations from the basic ones to tough problems like multi-variable math used at sea math pops up in unexpected areas like patterns in numbers. Instead the improvements in how ships run tie into route planning along with vessel structure choices. These linked ideas from the math let people build models, check how things work, then improve shipping setups step by step [3].

Navigators rely on algebra to figure out distances, angles, positions, plus space. Take the map routes formulas find the quickest path from the one spot to another, helping plan trips while cutting down on fuel needed [1]. That the math shows up again in ship controls used by marine engineers, where equations shape how systems behave. Those setups handle constant changes as steering inputs and still need to react smoothly under different weather or sea conditions [2].

The growth of safe encryption here the methods ties closely to number theory when it comes to sea-based tasks. Because of the shipping relies on smooth coordination, clear messaging, navigation tools, and protected data flow in the cargo monitoring, strong transmission matters. Signal handling tech in marine networks also uses basic math ideas to sharpen incoming messages and reduce mistakes. Instead of guessing, crews is depend on proven techniques like spotting errors or in organizing delivery routes to stay with efficient at sea. By using clock-like counting systems and similar math tricks in ports manage ship arrivals better, cut traffic jams, while speeding up loading and exit times [5].

3. Differential Equations in Maritime Applications.

Differential equations is also matter a lot in marine engineering especially when studying how ships and ocean structures move. These math tools show how vessels are react to various forces like rough weather, so builders can predict what exactly happens out at sea while tweaking blueprints for better results.

Differential equations can be used to describe the motion of ships, considering the forces affecting the vessel such as wind force, waves condition, currents, etc. These model say the 6 degrees of freedom (6 DOF) ship motions like surge, sway, heave, roll, pitch, or yaw is usually made up of linked ODEs. That setup shows how the ships react when hit by various wave conditions along with control inputs.

One key thing that the affects how steady a boat stays on water is its rolling movement. Take the ships, for instance their roll behavior when hit by regular wave patterns and also stormy seas can be written out using the math formulas called differential equations. Scientists have built simulations based on something known as HERM approach, which looks at rhythmically forced roll actions to the study tilt movements and resistance levels. Such simulations take into the account things like wave timing and vessel velocity to guess how much a ship might rock when the waves push against it.

The movement near its body's shape is often also shown using math rules called PDEs equations the Navier Stokes ones being a typical case etc. Those formulas explain how liquid moves close to the surface, helping figuring out drag, how much deep it sits, and tilt angle. Consider CFD software it leans on the such equations to simulate water the meeting solid parts, testing real world runs versus results.

In sea under various settings math equations help set up ways to manage boat movement and its balance. When the boats turn or shift, number based setups show how its move in four key ways this will helps build smart controls that work well. Usually, those setups can come from simplified versions of complex equations turned into state style formats.

For things like water pollution from ships, math formulas and logics can help show how stuff spreads. When you figure out how pollutants move in way where you get clues about what'll happen later on also ways to reduce harm. [3,4]

4. Discrete Mathematics in Maritime Applications.

Discrete Math is a branch of mathematics that deals with the countable and structured elements, is a key of element in many marine applications. In marine industry, ideas from Discrete Mathematics help with planning and setting up networks and timing tasks, also guiding choices through tools that assist decisions. For stronger sea shipping knowing Discrete Math really matters. It includes number models and map-style thinking and more each useful when ships share info with harbors. A part of discrete math which involves graph theory with this helps map out ship paths and links to harbors. Marine experts study these graphs using tools to pick efficient routes, boosting how fast goods arrive in port.

Getting ships in and out on time depends heavily on the solid port planning. Sorting out where boats park and who works when it boils down to smart number crunching tricks. What are those tasks? They often come down to solving tight mathematical puzzles with whole numbers as helps split up limited stuff without waste example docked ships or crew members. For example, pathfinding in marine navigation uses the algorithms of discrete mathematics, such as Dijkstra's or the A* Search Algorithm. These algorithms process the data from navigation systems to determine optimal path of a ship based on distance, of fuel, and other environmental and operational parameters.

This is a put forth method which is the models and makes sense of what is at times. A very complex issue of sea travel by which we look at certain events at specified points in time. (For example the arrival of ships at the port) [3]. Also in this we can look at what is the performance of the system and also which areas of inefficiency or bottleneck we can improve.

For example, in maritime logistics discrete mathematics may play a role in solving allocation which is of the issue of limited resources. Such as containers and ships in terms of which paths they take or which destinations they go to. Also we see that linear programming models are used in the design of that which is the best of allocation based on what the demand is.

5. Computational Fluid Dynamics (CFD) in Maritime Applications.

Computational Fluid Dynamics (CFD) is a key tool in the maritime field which gives designers the ability to model fluid movement around the marine structures [6]. We see in the practice the use of complex models. CFD puts forth to improve on fluid motion for the efficient performance of vessels and to do away with the high costs of physical testing. At a very large scale in terms of the ship's hull we see the use of CFD for research which is done in the experimental study. Because of computers simulate how water moves along the hull. Also get precise data on resistance, sinking depth, and balance across various speeds. So it helps shape hull designs that the cut drag of while boosting fuel economy. For instance the Vard Marine applies CFD to study hull the resistance and propulsion needs, also checking for how propellers affect the hull.

CAD helps in quickly tweak designs, so multiple boat shapes can add-on parts can be tried out no full scale physical tests needed. That's how vessels can meet modern fuel goals while staying with strong in real use. Another plus using CAD lets engineers that test virtual versions of the self-powered models which shows how a ship sails with its actual propeller setup. These simulations can track performance across different sea conditions where something vital when building low energy boats.

These computer methods pop up elsewhere too like modeling fuel spills. Further spread during water missions tracked by the agencies like the FAA. They help the shape game plans, check how ships hold its position which guide movement choices.

The next stage of CFD helps us to study the influence of disturbance like the wind and the current for the ship manoeuvra-

bility. This offers coefficients for dynamic positioning, etc. The analysis is very critical for the vessels working in harshs. Such in the case of computer based approaches which we use in many other aspects. Moreover which include simulation of fuel leakage or dispersion for the environmental risk assessment related to federal aviation administration (FAA) marine projects.

We use them these concepts for policy design, analysis of dynamic positioning and maneuvering. In the next step we look at CFD which is used to study. The effect of wind condition and current disturbances on ship maneuverability, Also get coefficients for dynamic positioning etc. The analysis is key for vessels that operate in rough environs to make sure the ships remain in the required positions. Meanwhile operating the environments to ensure the vessels stay in desired locations while operating.

More in to these advanced methods including that of CFD we see the study of complex flow issues. Such as tank sloshing and sedimentation processes and gas release (for instance the Liquefied natural gas (LNG)). By looking at how the liquids behave in the different situations, these insights which may help engineers design improved ocean tech [7].

Virtual tests early in design, CFD cuts down on costly tank trials. Besides this the modern CFD tools run quickly shortening development in the time while allowing instant feedback on tweaks. It shows exactly how the liquids move around ships covering aspects tough the just unmeasurable in real world scenario.

6. Formal Systems and Logic in Maritime Applications.

Because Marine Autonomous Surface Ships which is known as MASS and advanced ship controls are now around, clear rules and smart logic help boost safety. Which will ensure smooth operation, and trust in sea travel. This paper shows how structured logic models and strict step-by-step approaches matter a lot for the ships these days. Ship automation for the unmanned boats gets the built and checked through precise validation tools. These methods also bring solid blueprints so engineers can define the functions clearly Testing them with math backed checks, making sure everything runs tight and right. Take the global collision of avoidance rules at sea called COLREG that the keep watercraft from hitting each other. Those can be spelled the out exactly using such rigorous techniques.

The demands of changing systems are described through temporal logic. When it comes to sea operations. This clarifies when the boats must act a certain way to stay safe. Machine readable the rules let automated checks confirm self driving ships follow in a collision avoidance guidelines. Because of designs can be split apart. Complex setups break down into simpler ship based parts. That the breakdown brings better oversight and clarity. Helping trustworthy tech fit the smoothly into marine workflows.

To keep a ship steady in tough situations where dynamic positioning setups depend on the precise claims to get approved. Since the IMO sets global rules, those systems have to follow them. When checking if they work safely under different conditions at sea. Experts use strict validation ways. Instead of

guesswork, FSA offers a full method that will help boost safety at sea. The FSA method uses step-by-step methods to track dangers in different sea operations conditions. While giving leaders solid ground to follow rules. That move matters a lot when stopping many mishaps this is exactly what it's meant to do.

Using basic reasoning and some tools help control boat movements these are called vessel traffic services (VTS). By sharing the ship positions and weather informative they assist in the safer trips through busy harbours and narrow waterways. Their design relies on the clear logic patterns so messages stay accurate while avoiding crashes [8,9].

7. Geometry in Maritime Applications.

In maritime engineering this is evident that how things look matters a lot -especially when shaping the boat's body. Checking strength and testing movement through water. A vessel's form affects how well it moves and stays steady on the waves. The way the hull is built changes its behavior dramatically. Design the choices based on the shapes help mix affordability space layout. Solid structure and floatation traits, but also flow interactions. Modern techniques that apply adjustable models to fine tune forms so they face less drag while staying the balanced across different sea situations.

The way a ship floats and its balance, where its stability, and tilt is checked using shape based measures. A major factor here is that block coefficient. Showing how much space the submerged part of the hull takes up compared to a box around it. Knowing how these factors can connect helps designers the create vessels that the perform well in the rough and calm waters. Instead of real tests the engineers use digital shape models to see how boats handle loads and pressure from various directions. Structural checks they rely on the wave forces and cargo weight under the various running scenarios these require. Finite Element Analysis (FEA) built from 3D shape models.

In modeling fluid flow around the ship hulls, CFD relies on highly accurate hull shapes. Because of this, hull's form affects resistance and how smoothly it moves through water this is directly changes how the boat handles waves. With such exact digital copies, engineers get reliable results. These outcomes then steer decisions in shaping the final design.

A boat's balance movement depend on the way its hull is shaped. Water moves around it based on the features like the back end structure along with the outline at the surface level of these influence steering performance as well as how well the propeller works.

On top of that, one can spot how the ships move in multiple ways through the math setups relying on shape based rules. Because of this, these setups can help guess how a vessel acts under the different conditions say, when hit by gusts or rough weather.

8. Nonlinear Control in Maritime Applications.

As we see in the increase of complexity and autonomy in vessels the role of in depth non linear control systems. In ma-

rine settings is playing a greater role. We see that these control systems which we have designed to run the marine crafts' dynamics. This account which also include the non linear elements of their motion and their interaction with environment. This review looks at the importancy, different control methods, and use of control systems in the marine environs. The complex behavior of ships and marine vehicles is a result of non linear dynamics. We see in the interaction of hydrodynamic forces, steering, and also in the play of external environs. Like waves and current which act on the vessels. Control of such marine crafts in the face of such dynamics requires the use of nonlinear control systems.

Autonomous operations are guarantee as safe and effective operations as the marine sector increasingly. Automates with marine Autonomous Surface Ships (MASS). Strong nonlinear control systems are needed. Traditional linear control techniques that are insufficient for these systems because they must adjust to shifting conditions under uncertainty. Feedback linearization is a important method of state control whereby a nonlinear system is transformed into a linear system. This method can be employed to design controllers that stabilize the system. To a predetermined operating point or trajectory. Sliding mode control is optimal for marine settings where environmental perturbations can significantly influence the vessel's behavior. Sliding mode control is different as it is robust and can withstand uncertainties and the external disruptions. Despite the changes in settings, that this approach guarantees that the system will operate as intended.

These systems can use smart and tailored controls to handle tough ocean conditions. Like wind, waves and strong currents conditions. So that they can work on their own without help. They're built this way to stay steady during tasks far out at sea. That kind of precision matters a lot especially when setting up drills or putting barges exactly where needed. Building big structures offshore also get relies on this tech with working right.

A good route plan helps run drone boats better and making them better to steer through tough spots. For the tasks such as like checking areas out or saving people, these features really matter.

MPC's a smart way to that control systems by guessing what will happen exactly next using todays data and limits. Thanks to math tricks. It helps ships use less fuel while still playing safe out on the ocean [10].

9. Numerical Analysis in Maritime Applications.

One of the key part of building ships is doing math on computers. This helps tackle tough problems in boat design, water movement, and how well vessels operate. Instead of this just testing in real life, experts simulate ocean conditions as digitally to improve both performance and safety.

The study of water moving around the boat shapes usually relies on number based methods. Flow Simulation software, for instance. Tools like STAR-CCM+, which fall under computational fluid dynamics, Work with RANS equations to show

how liquids act. Instead of physical tests that these setups help estimate overall drag, how low a vessel sits. Its tilt, and wave trails across many hull types under differing conditions. Looking at Series 60 and KCS designs reveals how math-driven simulations uncover details about the pull forces or balance when speed changes.

Computer simulations mimic movement in the six directions to study of how objects behave. These models often rely on the math tools as they to predict a ship's reactions at sea. Instead of it experts use calculations to show how vessels handle forces like waves or gusts through dynamic setups. Without this such predictions, building reliable steering a systems for steady travel wouldn't be possible.

The streamlined shape of a boat's body matters a lot of figuring it out means the balancing price. Toughness, and water flow using tough math puzzles. Testing small tweaks in form helps cut drag while boosting speed. Thanks to the computer models. This whole process can runs on simulations guiding how designs evolve. Tools such as CAESES® facilitate multi-disciplinary parametric modeling and its optimization investigations.

Pattern of the life (PoL) analysis to be able to understand the vessel movement patterns over time. In this case numerical analysis which will applied on the marine traffic monitoring. To gain a better understanding of sea lanes and traffic patterns. Researchers focus could encode historical trajectory. Data with graph based models in which the ships' trajectory segments are the nodes and edges represent how the routes connect.

DPS is also necessarily based on the numerical methods. One need to achieve systems that can hold a vessel in position despite external forces. These systems are capable of applying very accurate. Manoeuvring corrections to the ship its based on numerical developments and data processing in real time. Which ensuring safe of operations even when the encountering adverse conditions. Numeric benefits of maritime efficiency. During the design stage, numerical simulation reduces the 100 % time and cost required for extensive model testing.

This high accuracy on the other hand would have reached when ships and the environmental context around them are so well understood by computational means. That excellent performance predictions will be possible.

The ability to iterate the designs quickly based on the numerical simulations makes innovative ship design and faster development cycles feasible [11].

10. Parallel Algorithms in Maritime Applications.

In the marine engineering with parallel methods handle big computing tasks. Thanks to speed and real time fixes for tough challenges. These systems use shared processing muscle to work. Through thec massive info piles, helping ships with flow modeling, movement control and finding better paths.

By handling tons of info on weather ocean flows and ship movements at once. Routes get adjusted fast using smart computing tricks. Take today's navigation tools that they check several paths side by side to find the one that's both safe and saves

fuel. That matters a lot for cargo boats. Since they've got to stick to strict timetables and skip hold-ups. Instead of waiting that these boats now use live updates mid-voyage thanks to quick number crunching methods. As a result vessels dodge rough seas and tough water pushes, boosting safety while the moving goods smoother.

In the container shipping smart methods help manage boxes across many vessels along with different hubs. These approaches handle big logistics puzzles well by turning the route system into a one-way map. Spots stand for harbors while links show possible paths. This allows the shifting cargo quickly when hiccups happen, cutting down expenses using alternate ways.

Because ports get crowded, computer networks will help us track boat movements at once. So boats don't crash and stall smart tools guess where jams might pop up. Where smoothing out travel paths instead. Handling many options side by side helps crews decide quicker, making sea trips safer in the end. Parallelism is the crucial to Computational Fluid Dynamics (CFD) simulations simulating the motion of fluids across ship hulls when its required. These simulations are extremely processing intensive because fluids are so complicated. Engineers also get up to speed faster by spreading the computation load across multiple processors and being able to run more exhaustive design iterations and optimizations.

Parallel processing is a methods that are employed to analyze marine traffic data for obtaining vessel life cycles. Graph based models stored in databases such as Neo4j. Which is enable maritime analysts to execute complex searches which review historical data and predict future activities. This study is very crucial for fine grained situational awareness and anomaly detection.

With work that can be spread over multiple processors. Parallel algorithms dramatically reduce the amount of time it takes to compute and enable decisions to be made in a timely manner for time critical maritime operations. They allow to test several situations solutions at a time. An important properties in case of complicated optimization problems with no available of a priori method for that problem.

Parallel algorithms can be effectively handle increasing data sizes when one can have larger datasets but not necessarily much more data. Distribution as such as those from AIS systems, as marine operations become more complicated processing time increase [12].

11. Statistics in Maritime Applications.

The maritime sector is depends on statistics because these numbers provide essential data. Helps organizations make decisions and optimize their operations while enhancing safety measures for all nautical activities. The maritime industry uses statistical methods for three main applications which involve:

1. Personnel data analysis.
2. Operational performance assessment.
3. Economic value measurement.

The maritime industry creates significant effects on which extend across both national and international economic systems. The facility serves as a crucial trade promotion center. In India because it manages 95% of all trade volume and 70% of all trade value. The industry generates more than \$50 billion annually for India's GDP while creating employment for 1.5 million people. Major ports are experiencing a 4.38% rise in their cargo handling traffic between 2023 and 2024 which resulted in 817.98 million tons of cargo. (The information comes from <https://indiashippingnews.com/budget-2024-the-shipping-sector>). The economic value of maritime activities becomes understandable to take the stakeholders and policymakers through these statistical data.

The global shipping industry relies heavily on skilled workers roughly around 1.9 million seafarers crew cargo vessels crossing oceans. That number splits into roughly 1 million deckhands. Also about 860 thousand officers. To fix mismatches between job availability and qualified crews, it helps to study who these workers belong to. How their numbers shift over time. Data shows demand for capable sailors keeps rising which shows better training programs and stronger hiring efforts must be followed.

Data is all about how much stuff moves by sea helps make sense of worldwide shipping networks. Even though there was a small drop of 0.4% in 2022, ocean freight should bounce back with a 2.4% rise in 2023. Then this keeps growing above 2% each year until 2028. Because of this shift, carriers might tweak their plans to the era of market changing market trends.

Looking at sea accidents like crashes or deaths which will help improve safety standards. By checking old records of lost ships and incidents was happened. Ocean regulators can notice patterns while setting up better rules. They study that what causes these errors so they can build focused training plans for sailors.

In marine shipping, ports act like key hubs. So checking how they will perform helps boost operations through numbers on goods moved, ships docking, or time spent loading. Help spot slow points at docks, which lets managers tweak things using real evidence instead.

The environmental effects of shipping especially is linked to greenhouse gases are checked using numbers. Around 3% of global emissions stem from ships while ongoing efforts to cut that carbon rely on data tracking emission patterns. Rules that aimed at shrinking pollution are shaped by these findings [13].

12. Stochastic Processes in Maritime Applications.

Since stochastic processes can handle randomness.

They work well at sea where many things can go wrong. So these methods help predict how the systems evolve into when chance plays a role key for making smart choices on ships. While dealing with uncertain events matters a lot in shipping. Tools are essential in making planning less risky. As conditions shift unexpectedly, having models that adapt improves safety and operations.

When sea states shift unpredictably waves, winds, and flow condition that the behavior of vessels gets estimated through

chance-based models. Instead of fixed inputs that experts run randomized into trials to see how these shifting factors affect cruising rate. Gas use maybe even day-to-day function. Because of this approach, builds become tougher in which better suited for actual ocean chaos, not perfect lab settings.

Stochastic processes may help model how ships move through busy harbors and travel along lanes. Looking at the port operations which allows managers to improve timetables and use staff and equipment better. Cutting down on hold-ups. This uses arrival and exit times as unpredictable factors. Checking how long vessels wait and how well services perform often involves tools such as queuing models, part of the broader idea of random process systems.

When checking risks at sea, random-based methods matter a lot in maritime segment. These ways will help predict accidents or gear breakdowns using old data. Along with how things run now. Safety rules and fallback options rely on such insights to lower threats.

The environmental impact of shipping. Like oil leaks and spreading pollutants is studied through the random simulations. Instead of fixed outcomes scientists use changing the scenarios to guess how likely and serious damage. Could be in different natural conditions. This information guides emergency prep plus follows legal rules.

Stochastic models can help forecast shifts in supply and demand across the shipping and logistics. Because they treat past shipping patterns as random processes. Companies get clearer insights into how to handle their fleets. Instead of guessing, firms adjust prices based on the probability trends hidden in old data. Route planning becomes smarter when randomness in delays or traffic is taken into account. This way of decisions aren't just reactive they're shaped by the likely outcomes.

The application of random-based models boosts prediction accuracy when things are uncertain. Using chance elements to better mirror real-life sea operations.

Folks who pitch in start thinking in clearer about risks and spotting where cash and effort fit best. Once they actually see how often stuff at sea plays out one way or another.

Unpredictable setups help us explore complex ocean behaviors because they manage tangled connections between various elements [13].

13. Spherical Trigonometry in Maritime Applications.

In sea journeys, using sphere mathematics makes things easier especially when figuring out directions. And also distances over Earth's round surface. Ships and planes use this approach since it gives precise route planning while also showing exactly where they are when they needed.

A large loop offers the fastest path on the sphere between two points. Because ships travel can along our planet's curve, this becomes key for smooth ocean journeys. For distant routes its clever methods from geometry help figure out these sweeping curves.

In navigation, large loops overlap for forming triangle-like curves. Because the arcs connect at certain angles, corner positions change based on those spans. Since paths are intersect

unevenly, seafarers use the spherical calculations to figure out bearing and range across them.

In celestial navigation, many of us use math based on spheres to find their position by measuring angles from stars or planets down to the horizon. Since those measurements create triangular patterns on a globe. It also becomes easier to lock in precise latitude and longitude spots.

Navigators work out new positions by checking their direction along with how much ground they've covered while steering a ship. Because Earth is round, special triangle math helps them calculate distances and keeping vessels from going off course mid-journey.

While GPS and new gadgets do most navigation now, seafarers still need spherical trigonometry which is the part of curriculum in marine universities. This math makes digital systems clearer during normal use. Though it's just as useful when electronics suddenly quit. The International Maritime Organization wants navigation courses at sea schools to include spherical trigonometry. Since future sailors should grasp traditional techniques along with today's tech.

Today some simulators guess a ship's position and route using tricks based on curved triangle mathematics concepts.

These tools help cadets grasp core ideas of giving hands-on experience with navigation while reducing reliance on digital gear [14].

14. Graph Theory in Maritime Applications.

Graph theory helps model complex sea transport setups so it's become key in marine research. When experts apply this math approach to map out connections across shipping routes their choices of improve while others operations run smoother.

Graph theory helps study sea traffic by showing how complex movements are and how ships flow from place to place. Instead of using traditional method and experts turn ships into points and paths they follow into links. This setup reveals behavior in harbors and open lanes. One example comes from Tianjin Port example where scientists applied network models to track vessel actions, uncovering clues that about timing strategies and motion trends.

To study how sea life moves, that scientists made network style maps. These involve drawing paths ships took before. Hence one can guess where they'll go next or catch odd routes in ocean travel. The maps help to provide a better grip on shipping links while supporting self-running checks.

Ship networks get mapped out with graph mathematics. Which helps check how well things run plus spot weak points. When scientists study how parts like engines and alarms connect when they figure out safer ways to operate in different situations.

To find faster and better paths at sea, people use math methods such as Dijkstra's approach where we have mentioned already. Because of this, ships burn less fuel while moving between harbors and navigating complex dock areas

Graph theory helps make digital twins work better these are online copies of real-world setups. Because it's easier to test different situations and guess how things will react if you map out a ship's parts and links like a network.

Graph models let people see complex connections clearly - so they can plan better routes, manage time smarter, or handle resources more easily. These visuals break down tricky setups into something understandable, helping teams act with confidence instead of guesswork.

Seafaring companies might build vessels that follow global safety rules - using network diagrams helps spot what could go wrong. Instead of guessing, they map risks so problems get caught early. This way, crew members stay protected while out at sea.

Fixing delivery paths through graph research cuts expenses while boosting performance [15].

15. Fuzzy logics in Maritime Application.

Fuzzy logic handles unclear choices naturally - so it fits well in shipping tasks. These methods work solid at different stages of sea missions - not just tactics or planning but daily execution too, especially around moving supplies, assigning gear, or picking harbors.

Important Uses of Fuzzy Logic in the Marine Industry:

Fuzzy logic deals well with unclear or messy info, so it works in tricky sea situations where details might be missing or unsure. Since ship activities need smart choices fast, this feature really matters.

Looking at various port choice factors, fuzzy logic helps give a full picture - factoring in standard financial stats while including things such as infrastructure quality along with cargo loads.

Fuzzy techniques help manage shifting demand and supply, so resources get used smarter. When it comes to empty containers, better flow happens because decisions adapt faster. Terminal performance jumps when systems respond flexibly. Each step gains from responsive planning instead of fixed rules.

Fuzzy logic tweaks old-school models by adding uncertain bits - so it boosts regular decision-making tricks while giving better results for shipping tasks and daily operations.

Fuzzy logic, when paired with different methods - say, through hybrid setups - can lead to smarter results by using the strong points of various analysis tools, which boosts how well systems work [16,17].

Looking at what we've seen so far, math clearly plays a big role in real-world uses. Below is a chart showing main math fields along with where they're used at sea, pointing out how each one helps make operations safer, smoother, or more creative practices.

Conclusions.

The use of math in shipping helps tackle tough challenges in today's sea transport. Instead of just handling routes, it shapes how ships are built using basic algebra or geometric patterns. When decisions get tricky, systems like fuzzy logic step in to guide choices despite unclear conditions. These tools boost safety while cutting waste and fuel use over time. Research shows smarter math methods improve both daily operations and

Table 1: Resume Table.

S. No	Mathematical Area	Application in Maritime
1	Algebra and Number Theory	Used for optimizing ship design and navigation calculations.
2	Differential Equations	Models ship dynamics and motion in various sea conditions.
3	Discrete Mathematics	Analyses routing problems and scheduling in shipping logistics.
4	Computational Fluid Dynamics (CFD)	Simulates fluid flow around vessels for design optimization.
5	Formal Systems and Logic	Ensures compliance with marine traffic rules for autonomous vessels.
6	Geometry	Applies to hull design and spatial navigation strategies.
7	Nonlinear Control	Develops control systems for managing ship stability and manoeuvrability.
8	Numerical Analysis	Assesses the sensitivity of maritime models to parameter changes.
9	Optimization	Enhances route planning to minimize costs and improve efficiency.
10	Parallel Algorithms	Processes large maritime datasets for real-time decision making.
11	Statistics	Evaluates risks and performance metrics in maritime operations.
12	Stochastic Processes	Models uncertainty in shipping logistics and environmental conditions.
13	Spherical Trigonometry	Used in navigation calculations involving spherical coordinates.
14	Graph Theory	Analyses maritime networks for optimal routing and connectivity.
15	Fuzzy Logics	Uncertainties inherent in decision-making processes.

Source: Authors.

handling unexpected risks. With new tech rising across marine fields, numbers and models will matter more than ever moving forward.

Future Research Directions.

Folks looking ahead ought to dig into a few big spots that boost math use at sea. Check out how artificial brains might

team up with number crunching to sharpen guesses about cargo runs - also smooth day-to-day work.

Look into how fuzzy logic works in fast-paced choices for self-driving boats, especially where conditions keep changing.

Build math tools using nature-related data to check how shipping affects the environment while reducing harm. Use real-world conditions in calculations to guide greener sea transport decisions without damaging ecosystems.

Examine the use of parallel algorithms and statistical methods to analyse large datasets generated by maritime activities for improved decision-making.

Foster teamwork among math experts, ocean tech specialists, also analysts to develop fresh approaches tackling new issues in shipping.

Chasing these studies helps shipping stay sharp - using math boosts how ships run while prepping for what's next.

References.

Wang, X.Z., & Xu, E.H. (2019). Ship Structural Design. In W. Cui, S. Fu, & Z. Hu (Eds.), Encyclopaedia of Ocean Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-10-6963-5_38-1.

Akakpo, G. S. K. (2021). The role and relevance of mathematics in the maritime industry. African Journal of Educational Studies in Mathematics and Sciences, 17(1), 1-12. Retrieved from AJOL.

Perez, T., & Blanke, M. (2002). Mathematical Ship Modelling for Control Applications. Technical Report. Retrieved from DTU Orbit.

Dragomir, C., & Ionu?-Constantin, M. (2020). Maritime Network Analysis: Connectivity and Spatial Distribution. In Proceedings of the Conference on Maritime Traffic Analysis. Retrieved from HAL.

Bunel, A., & others. (2017). Maritime Network Analysis: Connectivity and Spatial Distribution. In Proceedings of the Conference on Maritime Traffic Analysis. Retrieved from HAL.

Haase, M. (2021). Applications of Computational Fluid Dynamics (CFD) for Maritime Engineering.

Haase, M., & Hübner, A. (2020). Applications of Computational Fluid Dynamics in Maritime Engineering: A Review of Current Trends and Future Directions. Journal of Marine Science and Engineering, 8(10), 799. <https://doi.org/10.3390/jmse-8100799>.

Torben, T. R., Smogeli, Ø., Utne, I. B., & Sørensen, A. J. (2021). On Formal Methods for Design and Verification of Maritime Autonomous Surface Ships. NTNU Open.

Woodcock, J., & Davies, J. (2009). Using Formal Methods to Verify Maritime Systems. In Proceedings of the 2009 International Conference on Maritime Systems and Technologies.

Marzouk, A., & El-Shafie, A. (2024). Nonlinear Model Predictive Control for a Dynamic Positioning Ship Based on the Laguerre Function. Journal of Marine Science and Engineering, 12(2), 294. <https://doi.org/10.3390/jmse12020294>.

Sarker, D. K., & Tarafder, M. S. (2024). Numerical analysis of fluid flow around ship hulls using STAR-CCM+ with

verification results. *Journal of Marine Science and Engineering*, 23(2), 276–291. <https://doi.org/10.1007/s11804-024-00424-3>.

Parsons, M. G. (2009). Applications of optimization in early stage ship design. *Ciencia y Tecnología de Buques*, 3(5), 9–32.

GASTAT. (2023). Metadata Report of Maritime Transport Statistics. General Authority for Statistics, Saudi Arabia.

Tuomi, M. (2021). Spherical Trigonometry Handbook for Navigators (Bachelor's thesis). Bachelor of Maritime Management.

Yu, H., Bai, X., & Liu, J. (2023). Ship Behaviour Pattern Analysis Based on Graph Theory: A Case Study in Tianjin Port. *Journal of Marine Science and Engineering*, 11(12), 2227. <https://doi.org/10.3390/jmse11122227>.

Ries, J., González-Ramírez, R.G., & Voß, S. (2017). Review of Fuzzy Techniques in Maritime Shipping Operations. In T. Bektaş, S. Coniglio, A. Martinez-Sykora, & S. Voß (Eds.). *Computational Logistics. ICCL 2017. Lecture Notes in Computer Science*, vol 10572. Springer, Cham. https://doi.org/10.1007/978-3-319-68496-3_17.

Chao, C.C., & Yang, T.C. (2017). Multi-stage Data Envelopment Analysis for Evaluating the Efficiency of Global Liner Shipping Companies: A Fuzzy Approach. *Maritime Economics & Logistics*, 19(4), 520–540. <https://doi.org/10.1057/s41278-017-0022-5>.

Akakpo, G. S. K. (2016). The Role and Relevance of Mathematics in the Maritime Industry. *African Journal of Educational Studies in Mathematics and Sciences*, 12(1), 75–82. Retrieved from AJOL.

Liu, Y., & Wang, H. (2009). Agility in Container Terminal Operations: A Fuzzy Logic Approach to Performance Evaluation and Improvement Strategies. *International Journal of Shipping and Transport Logistics*, 1(3), 267–284. <https://doi.org/10.1504/IJSTL.2009.024376>.

Monfardini, E., & Bianchi, C.M. (2012). Mathematical Models for the Optimization of Marine Renewable Energy Systems: A Review of Current Approaches and Future Perspectives. *Renewable Energy*, 50, 12. <https://doi.org/10.1016/j.renene.2012.06.019>.