

Maritime Logistics Index (MLI): A composite Index

I. López Ansorena ^{1,*}

ARTICLE INFO

Article history:

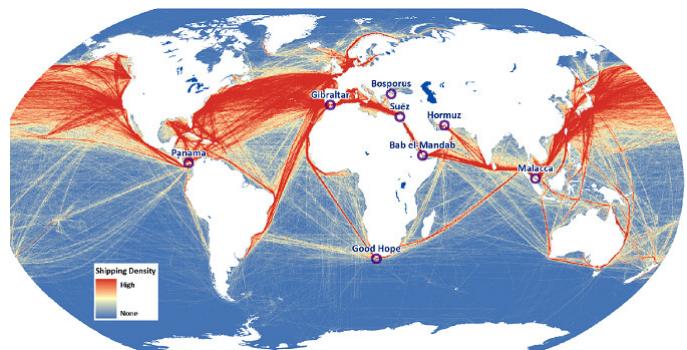
Received 28 Dec 2024;
in revised from 24 Jan 2025;
accepted 25 Mar 2025.

Keywords:

Logistics, Maritime Transport,
Composite Index, Covid Pandemic,
Port System.

© SEEMAR | All rights reserved

ABSTRACT


Many indicators have been developed over the years to measure the quality of logistics, but it is not easy to capture the essence of the whole maritime system. To partially bridge this gap, a new index called Maritime Logistics Index (MLI) is proposed. This index captures the information related to the maritime system, such as maritime connectivity, port throughput, logistic performance and gross domestic product. It is widely accepted that the access to the global markets depends largely on all these facets, which are now bring together to measure the strength of maritime logistics at a country level. Additionally, the paper brings a brief discussion about the consequences of covid-19 pandemic and reveals the best performing countries after the crisis, in terms of maritime logistics.

1. Introduction.

Maritime logistics is a direct contributor to production and consumption activities and is of critical importance for social and economic development (Avni et al., 2018). Today, maritime transport connects ports, countries and markets, facilitating container trade on a scale never seen before (Figure 1). In addition, the associated logistics chains are a source of employment worldwide and play a crucial role in the globalization process. It is not only crucial in contributing to the economic development of countries, but also contributes significantly to their stability and security.

To better understand the logistics environment of countries, it is first necessary to ask local experts. Usually, valuable information is obtained from interviews with leading logistic entrepreneurs, academic researchers, and policy makers, see for example Tansakul et al. (2018). Additionally, knowledge can be obtained through annual reports of multinational corporations, see Göpfert et al. (2016). In this sense, some international organizations and research centers develop annually composite

Figure 1: Maritime logistics index (MLI: 2010-2020).

Source: Rodrigue J.P. (2020).

indexes to understand logistics at a country level. These measurable indexes are the bedrock of this study, which aims to bridge the existing gap amongst the indexes related to economy and maritime transport.

The paper has two goals. The first one is to develop a composite index for measuring logistics worldwide. This index namely Maritime Logistics Index (MLI) should use the existing information related to the economy, overall logistics performance, maritime connectivity, port throughput, etc. of countries. The second goal is to analyze the covid-19 pandemic and

¹UNIR. C. de García Martín, 21, 28224 Pozuelo de Alarcón, Madrid (SPAIN).

*Corresponding author: I. López Ansorena. E-mail Address: ilopezans@gmail.com.

its effect on the logistics of countries from the perspective of the new index. To that end, two scenarios should be studied, one representing the precovid year and the other representing the situation after the pandemic disease.

The article is organized as follows; a literature review is included in Section 2. Then the specific components of the new index are proposed in Section 3. The methodology to build the new index and the main results are presented in Sections 4 and 5 respectively. And finally, conclusions are presented in Section 6.

2. Literature review.

The improvement of ports and maritime services has become an essential driver for the economic growth of countries. In this sense, a well-defined logistic environment leads to cost savings and hence competitiveness of the country, see Digesi et al. (2016). Several complex indicators have been developed over the years to measure economic variables and competitiveness of logistic systems. A performance index refers according to OECD (2008) to a composite indicator, which is formed when individual indicators are compiled into a single index on the basis of an underlying model. The composite index should ideally measure multi-dimensional concepts which cannot be captured by a single indicator, e.g., competitiveness, industrialisation, sustainability, single market integration, knowledge-based society, etc. In total more than a dozen indicators of trade facilitation have been developed testifying the importance of the subject as well as its complexity, (Auboin et al. 2015). Some of these composite indicators are summarized in Table 1.

Table 1: Country level indicators.

Index	Source
Liner Shipping Connectivity Index (LSCI)	UNCTAD
Liner Shipping Bilateral Connectivity Index (LSBCI)	UNCTAD
Logistics performance index (LPI)	World Bank
Gross Domestic Product (GDP)	World Bank
Quality of port infrastructure (WEF)	World Economic Forum
Enabling Trade Index (ETI)	World Economic Forum
Trade Facilitation Indicators (TFI)	OECD
Container Terminal Quality System (CTQS)	Global Institute of Logistics
Global Connectedness Index (GCI)	DHL
Number of ship calls and other variables	Lloyd's List Intelligence

Source: Author.

It is important to note that not all the previous indicators are developed structurally and made publicly available. There are also cases of public entities like OECD that include benchmark of port performance indicators, but the database behind these indicators is not publicly available, see Ducruet et al. (2014) and Langen (2016). In general, when the data is made publicly available, such as the case of LSCI of unctad, researchers may use it as a primary source to analyse specific maritime networks, from a regional or global perspectives, see the case of LSBCI (Ansorena, 2018) or port throughputs (Ansorena, 2023). This is more difficult when data is not open or there is not a public

organization behind the report, see for example the case of DHL (Ghemawhat and Altman 2014).

In regard to performance it is also important to remark that the logistics factor affects not only the competitiveness of a nation, but also the competitiveness of its firms. Poor performance is a barrier to maritime trade and foreign direct investment and thus to economic growth, see Jhawar et al. (2017). In this sense, covid pandemic made a huge impact on the logistics chains all over the world and the response of countries was different. The main reason behind that impact was the reproductive number – the number of secondary infections generated from one infected individual – of the disease. According to the World Health Organization (WHO, 2000), this number was estimated to be between 2.0 and 2.5 for COVID-19 virus, higher than for seasonal influenza whose reproductive number typically ranges from 1.3 to 1.80.

Although the Covid crisis clearly marks a “before” and “after” in logistics worldwide, in the past couple of decades, a plethora of catastrophic natural and manmade disasters have resulted in millions of deaths and billions of dollars of economic loss (Adnan et al. 2022). In the case of COVID-19 pandemic, many countries had severely faced difficulty in operating routine business and supply chain activities. Operational challenges included liquidity crunch, delay, or halts in production activities due to long time shutdown of production sites, resizing the labour workforce, non-availability of raw material, and low demand. These issues brought many companies into a critical situation towards the right balance between survivability and sustainability, from a long-term perspective (Joshi and Sharma, 2022). More recently, Min (2023) has made one of the first attempts to propose crisis management strategies for enhancing supply chain resilience in the aftermath of the COVID-19 pandemic using a strategy map. Given a dearth of this line of research, Min (2023) developed a conceptual framework of crisis management in business-friendly terms. The question now is: how can we measure the logistic strength of countries to deal with pandemic problems?

It is clear that transparency and availability of data are crucial factors to make logistics work. In the case of supply chains, transparency have slowly gained prominence because of its utility in resolving sustainability concerns and improving operational efficiency and decision making (Chatterjee and Chatterjee, 2022). In this sense, identifying the quality of the logistics system from the international perspective is a basic step to eliminate barriers and mitigate the impacts of natural or manmade catastrophic disasters.

In sum, the literature review has presented a brief background on logistics indicators at a country level and the impact of covid on logistic systems. With this general picture in mind we propose a new Maritime Logistics Index (MLI) to monitor the quality of the maritime system from the global perspective. The composite index is computed using four recognized indicators, which are published annually by the United Nations Conference on Trade and Development (UNCTAD) and the World Bank. On one hand, Liner Shipping Connectivity Index (LSCI) and Port Throughput (PT) of countries will be collected from UNCTAD. On the other hand, Gross Domestic Product (GDP)

per capita and Logistics Performance Index (LPI) will be collected from the World Bank. The following section briefly describes the main characteristics of the selected components.

3. Components of the Maritime Logistics Index.

The access to the world market depends largely on the maritime connectivity of countries. The maritime connectivity is provided through liner shipping services which transport goods by means of containerships that transit regular routes on fixed schedules. Within this context, the LSCI developed by UNCTAD aims to capture the level of integration of countries into the global liner shipping network. It measures annually the competitiveness of nations with respect to logistics and transport and is generated from five components (Hoffmann 2005):

- The number of ships.
- The total container-carrying capacity of those ships.
- The maximum vessel size.
- The number of services.
- The number of companies that deploy regular services from/to a specific country.

The LSCI is focus on shipping capacity but ideally it is more interesting to reflect the actual number of containers carried. Unfortunately, data at this level of detail is not easily available (Bartholdi et al. 2016). In addition, the LSCI does not look to the ports of the country (infrastructure, quality of service, turnaround times, etc), although it considers the level of competition on services that connect ports in country A to ports in country B. To bridge this gap we have considered a second component, the Port Throughput (PT). This measure of port competitiveness reflects the crucial role that ports play in the configuration of maritime networks. The third component of the composite index is the LPI, which is based on a worldwide survey of operators on the ground that provides feedback on the logistics “friendliness” of the countries; see Arvis et al. (2007) and Arvis et al. (2012). Thus, LPI ranks countries on the following six dimensions of maritime trade:

- The efficiency of customs and border management clearance.
- The quality of trade and transport infrastructure.
- The ease of arranging competitively priced shipments.
- The competence and quality of logistics services-trucking, forwarding, and customs brokerage.
- The ability to trace consignments.
- The frequency with which shipments reach consignees within scheduled or expected delivery times.

It is important to note that the LPI is focus on several aspects of maritime logistics, but it does not bother about the forces behind them. To partially bridge this gap we have included the port throughput (PT) and the Gross Domestic Product (GDP) as the third and fourth components of the new index. On one hand, PT is the most visible variable to describe port function. On the other hand, GDP is an important driver for the logistics chains, since it represents the sum of value added of all producers in each country. The World Bank provides GDP data in current U.S. dollars, although dollar figures for GDP can be converted from domestic currencies using single year official exchange rates. Finally, the links to the primary information sources are:

- LPI: Logistics Performance Index. Data from the World Bank national accounts data, and OECD National Accounts data files. <https://lpi.worldbank.org/report>.
- GDP: Gross Domestic Product per capita (current US\$). Data from the World Bank national accounts data, and OECD National Accounts data files <https://data.worldbank.org/indicator/NY.GDP.PCAP.CD>.
- LSCI: Liner Shipping Connectivity Index. UNCTAD, United Nations Conference on Trade and Development. Data from: <http://unctadstat.unctad.org>.
- PT: Port Throughput of the country (Annual container traffic in TEU). UNCTAD, United Nations Conference on Trade and Development. Data from: <http://unctadstat.unctad.org>.

4. Methodology.

In total, three scenarios are analysed: Past decade (2015), Precovid (2019) and Post covid (2022). After the collection of data, the index is generated as follows: For each of the four components (LPI, LSCI, GDP and PT), a country's normalized value is computed. To that end we use:

$$Z_i = \frac{x_i - \min(x)}{\max(x) - \min(x)} \quad (1)$$

where:

“ x_i ” is the measured value of the component in i^{th} country.

“ $\min(x)$ ” is the minimum measured value of the component $x=(x_1, \dots, x_n)$.

“ $\max(x)$ ” is the maximum measured value of the component $x=(x_1, \dots, x_n)$.

“ Z_i ” is the normalized value of the component in i^{th} country.

Then MLI for country “ i ” is computed as the average of the four normalized values:

$$MLI_i = \frac{\sum_{j=1}^4 Z_{ij}}{4} \quad (2)$$

To better understand how the MLI value is computed we now present as example the case of Spain in the precovid scenario (year 2019).

First we normalize the LPI value of Spain (i^{th} country=139):

“ x_i ” is the measured value $x_{139} = 3.83$ (LPI Spain)

“min (x)” is the minimum measured value of $x=(x_1, \dots, x_n)$:

Minimum value of LPI = 2.04

“max (x)” is the maximum measured value of $x=(x_1, \dots, x_n)$:

Maximum value of LPI = 4.20

“ Z_i ” is the normalized value of the i^{th} country. Z_{139} :

$$Z_i = \frac{x_i - \min(x)}{\max(x) - \min(x)} = \frac{3.83 - 2.04}{4.20 - 2.04} \approx 0.828$$

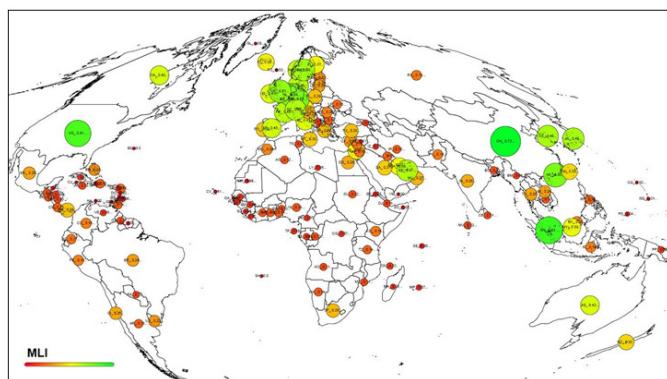
Then the same procedure is applied to the other variables (LSCI, GDP/capita and PT), see Table 2:

Table 2: Calculation of Spanish MLI (i^{th} country=139).

Country: Spain	LPI	LSCI	GDP/capita	PT
Value	3.83	83.91	29,581	17,464,920
Normalized value	0.828	0.544	0.251	0.073

Source: Author.

And finally MLI is computed as the average of the four normalized components:

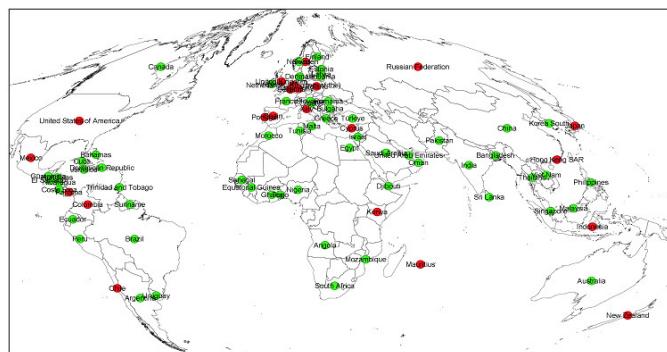

$$MLI_{139} = \frac{\sum_{j=1}^4 Z_{139j}}{4} = 0.424$$

This procedure is applied to all the countries in order to reflect the past decade (using data of the year 2015) and the two other scenarios: precovid (year - 2019) and post covid (year - 2022).

5. Results and Discussion.

The experiment data-file, with the detailed calculations to aggregate the components into the MLI, was uploaded to the Mendeley repository (DOI: 10.17632/8gx3rb5dc3.1). Since the dataset includes some missing data it was not possible to compute the exact values for all the countries. However, a general and detailed picture of MLI for the past decade was obtained, see Figure 2.

Figure 2: Maritime logistics index (MLI: 2010-2020).


Source: Author.

The above figure represents the situation of logistics in the middle of the last decade. Here a bigger node means a higher

MLI value which ranges from 0.0 (theoretical minimum value) to 0.72 (theoretical maximum value in China). In broad terms, high values of MLI (MLI > 0.290) are strongly correlated to a GDP per capita over 25,000 US\$, a total port-throughput over 6-7 million containers (TEU size) and a high profile country in terms of UNCTAD and World Bank indicators (LSCI > 3.812 and LPI > 3.43). On the other hand, low values of MLI (MLI ≤ 0.290) are strongly correlated to a GDP per capita between 10,000 and 25,000 US\$, and low levels of LSCI and LPI. Figure 2 proves that MLI is able to measure the quality of maritime logistics in countries all around the globe.

In the second step, the same procedure is developed to understand the effects of covid disease on maritime systems. A pre-covid scenario with data of the year 2019 and a post covid scenario with data of the year 2022 were designed. Following the same methodology the normalization of MLI for both scenarios shows how the maritime systems (economy, logistics, ports and connectivity) evolved all over the world. In this regard, Figure 3 clearly shows the countries that have improved their MLI after the pandemic (in green) and the countries that had not yet recovered their pre-pandemic MLI value by the end of 2022 (in red). It is beyond the scope of this article to discuss what causes one country to perform better or worse than another. Generally speaking, a larger difference between the post-pandemic and pre-pandemic MLI means greater country resilience of its logistic systems.

Figure 3: Countries performance after covid pandemia.

Source: Author.

The MLI scores of each country, as well as their components are included in the Appendix, (also available at www.mendeley.com)

Conclusions.

Traditionally, research centers and trade organizations have developed country-level indicators to measure the quality of transport, trade and logistics. These indicators are usually based only on a single facet of the logistics system, instead of multiple facets. For example, the International LPI provides the qualitative evaluation of countries from the perspective of logistics and trading partners. These evaluations are mainly based on surveys from industry leaders' opinions, which are a subjective opinion after all. LSCI measures facts and indicates the integration level of countries into the global liner shipping network. It

definitively adds value to the LPI measure, but there are several crucial characteristics with strong ties to ports and logistics that are not considered by LSCI, nor LPI, e.g., port throughput, hinterland's economy, etc. To partially bridge this gap PT and GDP are added as components of the MLI. The proposed new index captures the overall structure of logistic services (maritime services as well as on-land services) and is able to rank nations according to the strength and reliability of their logistic systems. MLI is relevant in terms of its components: PT, LSCI, LPI and GDP and it is also an accurate measure since the basic data is annually provided by recognized International Organizations. Since the components of MLI are publicly available, the new index has an easy implementation and a high potential to properly rank countries all over the world.

References.

Adnan, Z.H., Ashik, A.H., Rahman, M., Bhuiyan, S.S. and Ganguly, A. (2022) Applying linear programming for logistics distribution of essential relief items during COVID-19 lockdown: evidence from Bangladesh. *Int. J. Logistics Economics and Globalisation* 9(3), 191-204. <https://doi.org/10.1504/IJLEG.2022.120808>.

Ansorena I.L. (2018) Bilateral connectivity in the liner shipping network: an overview. *World Review of Intermodal Transportation Research* 7(2), 1-20. <https://doi.org/10.1504/WRITR.2018.095255>.

Ansorena, I.L. (2023) On the liner shipping network design: the Maritime Silk Route case study. *Int. J. Logistics Systems and Management* 44(1), 132-146. <https://doi.org/10.1504/IJLSM.2023.128558>.

Ansorena, I.L. (2024). A composite index to measure the potential of maritime logistics. Mendeley Data, V1, doi: 10.17632/8gx3rb5dc3.1.

Arvis, J. F., Mustra, M. A., Ojala, L., Shepherd, B., & Saslavsky, D. (2012). Connecting to Compete: Trade Logistics in the Global Economy. The Logistics Performance Index and its indicators. Washington: The International Bank for Reconstruction and Development/ The World Bank.

Arvis, J.F., Mustra, M.A., Panzer, J., Ojala, L. and Naula, T. (2007) Connecting to Compete: Trade Logistics in the Global Economy, Technical Report, The World Bank.

Auboin, M. et al. (2015) World Trade Report 2015. [online] WTO Publications, Geneva, Switzerland. https://www.wto.org/english/res_e/booksp_e/world_trade_report15_e.pdf. (Accessed 18 March 2017).

Avni Es, H., Hamzacebi, C., Oktay Firat, S.U. (2018) Assessing the logistics activities aspect of economic and social development. *Int. J. of Logistics Systems and Management* 29(1), 1-16. <https://doi.org/10.1504/IJLSM.2018.088577>.

Bartholdi J.J., Jarumaneeroj, P. and Ramudhin, A., (2016) A new connectivity index for container ports. *Maritime Economics & Logistics* 18(3), 231-249. <https://doi.org/10.1057/mel.2016.5>.

Chatterjee, S. and Chatterjee, D. (2022) Modelling the barriers of supply chain transparency in the post-COVID-19 sce-

nario. *Int. J. Logistics Economics and Globalisation* 9(3), 277-301. <https://doi.org/10.1504/IJLEG.2022.120812>.

Digiesi, S., Mascolo, G., Mossa, G., Mummolo, G., (2016) Internalisation strategies of external costs of transport for a sustainable logistics. *Int. J. of Productivity and Quality Management* 18(2/3), 238-257. <https://doi.org/10.1504/IJPQM.2016.076709>.

Ducruet, C., Itoh, H. and Merk, O. (2014). Time Efficiency at World Container Ports. International Transport Forum. Discussion Paper No. 2014-08. Paris, France.

Ghemawhat, P. and Altman, S.A. (2014) DHL Global Connectedness Index 2014: Analyzing Global Flows and their Power to Increase Prosperity, IESE Business School.

Göpfert, I., Stephan, M., Wellbrock, W., Ackermann, M. (2016) The strategic relevance of logistics: new perspectives. *Int. J. of Logistics Systems and Management* 25(1), 108-128. <https://doi.org/10.1504/IJLSM.2016.078487>.

Hoffmann, J. (2005). Liner Shipping Connectivity. UNC-TAD Transport newsletter 27(1), 4-12.

Jhawar, A., Garg, S.K., Khera, S. N. (2017) Improving logistics performance through investments and policy intervention: a causal loop model. *Int. J. Productivity and Quality Management* 20(3), 363-391. <https://doi.org/10.1504/IJPQM.2017.082638>.

Joshi, S. and Sharma, M. (2022) Impact of sustainable supply chain management on performance of SMEs amidst COVID-19 pandemic: an Indian perspective. *Int. J. Logistics Economics and Globalisation* 9(3), 248-276. <https://doi.org/10.1504/IJLEG.2022.120811>.

Langen, P. De (2016). Other port industry and supply chain indicators. PORTOPIA Collaborative Project. Technical Report DELIVERABLE 8.2.

Min, H. (2023) Supply chain crisis management in the wake of the COVID-19 pandemic. *Int. J. Logistics Systems and Management* 44(1), 1-16. <https://doi.org/10.1504/IJLSM.2023.128555>.

OECD (2008) Handbook on Constructing Composite Indicators – Methodology and user guide. OECD publishing.

Tansakul, N., Suanmali, S., Veeris Ammarapala, V. (2018) Perception of logistics service provider regarding trade facilitation for cross border transportation: a case study of east-west economic corridor. *Int. J. of Logistics Systems and Management* 29(2), 131-150. <https://doi.org/10.1504/IJLSM.2018.089168>.

WHO (2020) 'Coronavirus disease 2019 (COVID-19)', Situation Report-4 [online] https://www.who.int/docs/default-source/coronavirus/situation-reports/20200306-sitrep-46-covid-19.pdf?sfvrsn=96b04adf_4 (accessed 1 April 2020).

Appendix.

Table .3: Past decade scenario.

Country	DATA COLLECTED			DATA NORMALIZED			MJU		
	LPI	LSCI	GDP	PT	LPI	LSCI	GDP	PT	
Alturas	2.41	3.37	0.147	96.000	0.308	0.013	0.048	0.001	0.092
Algeria	2.77	5.55	3.844	360.522	0.445	0.026	0.044	0.002	0.129
Samoa	5.22	NA	NA	-	0.024	-	-	-	0.006
Angola	2.24	29.67	37.11	1,009,090	0.243	0.171	0.035	0.006	0.114
Anguilla	3.94	4.32	51.54	51.17	0.167	0.016	0.153	0	0.178
Argentina	2.21	36.38	12,449	177,574	0.232	0.211	0.154	0.01	0.152
Aruba	NA	6.2	NA	167,514	-	0.048	-	0.001	0.008
Australia	3.79	30.64	49.928	724,843	0.833	0.177	0.632	0.041	0.421
Austria	4.1	NA	44.177	105,595	0.951	0	0.558	0	0.378
Azerbaijan	2.55	27.67	22.46	1,399,850	0.287	0.159	0.108	0.003	0.279
Bahrain	3.31	26.48	21,354	373,626	0.155	0.152	0.28	0.002	0.271
Bangladesh	2.66	12.62	1,359	1,655,365	0.403	0.068	0.012	0.009	0.123
Barbados	4.11	16.097	71,468	-	0.022	0.2	0	0	0.056
Belgium	8.64	88.64	41,095	11,077,625	0.954	0.519	0.062	0.015	0.515
Bhutan	7.6	4.11	41,933	41,933	0.069	0.056	0.008	0	0.074
Benin	2.43	18.34	789	403,146	0.316	0.033	0.003	0.002	0.106
Bermuda	NA	1.29	NA	NA	-	0	-	-	0
Brazil	3.09	39.93	8,650	10,676,654	0.567	0.233	0.105	0.059	0.241
Brunei Darussalam	2.87	3.86	24,939	128,026	0.483	0.015	0.001	0.029	0.001
Burkina Faso	3.01	4.86	5.851	103,764	0.46	0.021	0.009	0.001	0.035
Cabo Verde	NA	4.1	NA	NA	0.017	0.033	-	0	0.013
Cambodia	2.8	5.61	28.905	285,905	0.456	0.026	0.011	0.002	0.124
Cameroun	2.19	15.01	1,033	367,332	0.208	0.083	0.008	0.002	0.075
Canada	3.93	42.64	42.64	1,074,764	0.898	0.249	0.533	0.031	0.425
Cameroon Islands	NA	3.12	NA	NA	-	0.005	0.001	0	0.001
Chad	3.26	36.3	13,793	3,742,590	0.627	0.211	0.171	0.021	0.257
China	3.68	167.48	8,123	181,635,245	0.783	1	0.099	1	0.72
Chiriquí	4.07	101.02	45,681	22,300,000	0.939	0.6	0.552	0.123	0.554
Chile	3.7	75.75	16,490	16,490,542	0.790	0.448	0.448	0	0.034
China (Taiwan)	3.58	55.65	55.65	3,127,994	0.567	0.233	0.105	0.059	0.245
Comoros	2.98	5.30	775	10,100	0.373	0.026	0.005	0.005	0.101
Congo	2.38	29.24	1,528	436,717	0.297	0.168	0.015	0.002	0.12
Costa Rica	2.65	11.49	11,825	186,267	0.399	0.061	0.146	0.011	0.154
Côte d'Ivoire	2.6	22.01	783	102	0.38	0.125	0.015	0.004	0.131
Côte d'Ivoire	18.51	53.51	12,001	176,596	0.538	0.168	0.149	0.001	0.233
Côte d'Ivoire	2.26	5.76	NA	30,000	0.007	-	-	0	0.078
Criçáo	NA	5.94	NA	NA	-	0.028	-	-	0.007
Cyprus	3	19.32	23,324	291,408	0.532	0.108	0.293	0.002	0.234
Cyprus	2.38	4.07	445	NA	0.297	0.017	0.001	0.001	0.079
Cyprus	10.69	54.68	53,418	101,011	0.483	0.222	0.027	0.005	0.462
Croatia	2.22	29.41	NA	773,141	0.234	0.169	0.044	0.004	0.112
Dominican Republic	NA	2.05	7,144	NA	-	0.005	0.006	-	0.023
Dominican Republic	2.63	24.55	6,722	1,795,221	0.392	0.14	0.061	0.01	0.156
Ecuador	2.78	31.36	5,969	1,786,981	0.449	0.181	0.071	0.01	0.178
Egypt	1.98	6.52	3,024	80,160	0.358	0.168	0.049	0.004	0.254
El Salvador	2.71	8.93	2,224	189,811	0.422	0.046	0.049	0.001	0.19
Guinea	1.08	8.96	8,333	NA	0.106	0.046	0.101	0	0.063
Eritrea	2.17	3.49	NA	NA	0.217	0.013	-	-	0.057
Estonia	3.36	5.4	17,755	198,371	0.689	0.227	0.029	0.001	0.229
Faeroe Islands	NA	3.96	NA	NA	0.016	-	-	0	0.016
Fiji	3.24	9.55	4,123	NA	0.274	0.044	0.081	0	0.098
Finland	3.92	9.64	43,900	171,642	0.892	0.05	0.545	0.009	0.372
France	3.9	83.9	38,855	6,645,691	0.875	0.497	0.465	0.037	0.468
French Polynesia	NA	12.09	NA	86,768	-	0.065	0	0	0.016
French Polynesia	19.36	9.58	7,149	107,986	0.244	0.149	0.087	0.001	0.176
Georgia	NA	6.64	473	NA	0.029	0.031	0	0	0.037
Georgia	2.35	5.73	3,854	446,972	0.286	0.027	0.044	0.002	0.039
Germany	4.23	97.75	41,936	19,685,381	1	0.58	0.53	0.108	0.555
Ghana	2.66	29.27	1,513	83,771	0.403	0.117	0.014	0.005	0.135
Greece	3.24	47.41	15,104	3,929,877	0.624	0.278	0.226	0.022	0.287
Grenada	NA	2.5	NA	NA	0.026	-	-	0	0.023
Grenada	NA	4	9,489	NA	0.016	0.116	-	0	0.033
Guatemala	NA	8.33	23,084	-	0.042	-	0.001	0.011	-
Guyana	2.48	20.3	4,147	1,273,392	0.386	0.336	0.114	0.048	0.007
Guyana	3.36	8.92	NA	NA	0.289	0.046	0	-	0.041
Guyana Bissau	NA	3.31	620	NA	0.033	0.003	-	0	0.078
Guyana	2.67	4.52	4,457	NA	0.407	0.019	0.052	-	0.12
Haiti	1.72	6.31	740	NA	0.046	0.046	0.008	-	0.02
Honduras	2.46	9.96	2,361	704,934	0.327	0.052	0.026	0.004	0.102
Iceland	3.59	4.36	59,977	235,892	0.685	0.018	0.76	0.001	0.361
Iceland	4.22	44.24	1,042	11,155,205	0.273	0.173	0.027	0.004	0.251
Indonesia	2.98	27.19	2,570	11,901,763	0.525	0.156	0.041	0.006	0.197
Iran	2.6	24.63	NA	5,163,843	0.38	0.14	-	0.028	0.137
Iraq	2.19	4.88	4,610	NA	0.209	0.029	0.054	0	0.071
Ireland	3.79	9.49	61,650	53,471	0.833	0.049	0.035	0.008	0.177
Ireland	3.69	37.36	31,023	2,446,000	0.333	0.217	0.111	0.013	0.371
Italy	3.76	67.41	31,527	11,312,277	0.821	0.398	0.394	0.062	0.416
Jamaica	2.4	20.05	4,868	1,638,100	0.304	0.113	0.057	0.009	0.121
Japan	3.97	78.9	38,894	20,744,461	0.901	0.467	0.491	0.114	0.493
Jordan	2.96	29.27	4,099	79,764	0.517	0.168	0.047	0.004	0.184
Kazakhstan	3.22	13.66	1,020	1,020,000	0.568	0.274	0.054	0.006	0.202
Kiribati	NA	2.91	1,449	NA	0.01	0.014	0.006	0	0.006
Kuwait	3.72	115.61	27,539	23,798,846	0.806	0.688	0.346	-	0.493
Kuwait	3.15	8.89	1,277,674	NA	0.589	0.046	-	0.007	0.161
Labu	3.33	3.62	14,118	349,763	0.650	0.014	0.165	0.002	0.215
Ladonia	2.72	35.1	7,124	12,120	0.505	0.029	0.086	0.007	0.193
Liberia	2.2	7.78	455	NA	0.228	0.039	0.001	0	0.067
Liberia	2.28	4.86	4,866	NA	0.251	0.021	-	0.003	0.069
Lithuania	3.63	6.22	14,899	42,028	0.671	0.272	0.077	0.003	0.247
Madagascar	2.19	10.73	401	181,808	0.209	0.057	0	0.001	0.067
Maldives	2.42	10.77	2,745	2,745,205	0.265	0.125	0.025	0.002	0.257
Maldives	2.51	7.89	8,602	83,778	0.346	0.039	0.106	0	0.122
Malta	3.07	57.69	26,058	3,003,003	0.559	0.399	0.315	0.017	0.307
Marshall Islands	NA	3.02	NA	NA	-	0.01	0.01	0	0.012
Mauritania	1.87	6.26	3,448	NA	0.405	0.03	0.008	0	0.025
Mauritania	2.64	9.26	3,258	53,636	0.565	0.165	0.018	0.004	0.272
Mexico	3.11	59.88	8,201	5,273,945	0.574	0.295	0.1	0.029	0.25
Micronesia	3.11	3.09	3,069	NA	-	0	0.034	-	0.009
Micronesia	NA	1.32	3,069	NA	-	0	0.034	-	0.009
Moldenegro	2.67	3.19	6,701	NA	0.297	0.011	0.061	-	0.097
Morocco	2.67	64.72	2,832	3,079,000	0.407	0.082	0.181	0.002	0.209
Morocco	2.99	29.89	3,474	775,743	0.529	0.172	0.116	0.004	0.186
Paraná	NA	1.32	16,262	NA	0	0.169	-	0	0.042
Panama	3.34	53.42	15,680	7,842,291	0.662	0.314	0.17	0.044	0.297
Paraguay	NA	7.52	NA	7,862,301	0.346	0.037	0.002	0.006	0.096
Peru	2.99	37.8	8,046	2,234,582	0.49	0.22	0.072	0.012	0.199
Philippines	2.86	17.81	2,951	5,869,427	0.479	0.099	0.033	0.002	0.161
Poland	3.43	52.5	12,372	2,051,718	0.696	0.308	0.153	0.011	0.292
Portugal	3.41	48.16	19,813	2,857,048	0.688	0.262	0.244	0.016	0.308
Portugal	3.41	48.16	19,813	2,857,048	0.688	0.262	0.244	0.016	0.308
Romania	3.24	17.71	5,174	2,401,811	0.594	0.364	0.251	0.035	0.311
Russia	2.61	4.98	6,494	NA	0.02	0.029	0.029	0	0.025
Sweden	4.2								