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ABSTRACT

The research work is focused on sensors fault detection and isolation (FDI),
exploiting the synergy of functional and physical redundancy. Functional and
physical redundancy is applied under a novel methodological approach to isolate
individual sensor faults. The contribution uses a heuristic algorithm which com-
bines a rule based strategy associated to a process parameter identification proce-
dure to be applied on instrumentation FDI tasks. Implementation procedure is
carried out on a dynamic positioning system (DP) equipped with supervision
facilities, which efficiently manage databases, rule based systems and appropriate
identification algorithms on a simulation basis.

Keywords: Dynamic Positioning Systems, Fault detection, Fault isolation, Expert
systems, Functional redundancy, Physical redundancy, and Rule based system.

INTRODUCTION

Most of the supervisors design methods are based on the plant models. Additionally,
the implementation of intelligent control technology based on soft computing
methodologies such as expert systems and artificial intelligent techniques can nota-
bly enhance the supervision and advanced control capabilities of many industrial
processes such as process engineering industries and many other complex chemical
engineering processes (Lippmann, R. P., 1987). A necessary requirement to succes-
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stully be applied, such state of the art techniques needs to operate with highest-qua-
lity data, which means a considerable effort on applying sensors faults isolation
and/or faults tolerant strategies. The typical faults encountered in industrial applica-
tions are commonly classified into some of the following typical groups: Process
parameter changes, Disturbance parameter changes, Actuator malfunctions, and
Sensor malfunctions.

The sequence of subtasks to be carried out to ensure correct process operation is
at the heart of process supervision, usually referred to as process monitoring tasks,
including, fault detection, fault identification, fault diagnosis, and fault removing by
process intervention, process recovery or process reconfiguration. Process monito-
ring is based on data acquisition and data processing procedures. An introduction on
this topic can be found at (Ferreiro Garcia R.,2007).

Among data driven methods, Partial Least Squares (PLS) are data decompositi-
on methods for maximizing covariance between predictor block and predicted block
for each component (Wise B. M. and Gallagher N. B., 1996) (MacGregor J. E,,
1994) (Piovoso M. J. and Kosanovich K. A.; 1992) (Piovoso M. J. and Kosanovich K.
A.,1994).

Regarding analytical methods, they use residuals as features which are common-
ly referred to as analytical redundancy methods. The residuals are the result of con-
sistency checks between plant observations and their math-model. The residuals will
be sufficiently large values in the presence of faults and small or negligible in the pre-
sence of disturbances, noise and/or modeling errors (Frank P. M., 1993), (Gertler. J.
J.1998) (Hodouin D. and Makni, 1996). Three main methods are commonly used to
generate residuals: Parameter estimation, Observers and Parity relations.

In the case of parameter estimation, the residuals are the difference between the
nominal model parameters and the estimated model parameters. Deviations in the
model parameters are an indicator used as the basis for detecting and isolating faults
(Isserman R.,1998) (Mehra R. K. and Peschon J.,1971).

In the observer-based methods, system output is reconstructed from measure-
ments or a subset of measurements with the aid of observers. The differences
between actual measured output and estimated output are the residuals (Frank P.
M., 1990) (Clark R.N. et all., 1975).

The parity relations strategy checks the consistency of the mathematical equati-
on of the system with real time measurements. The parity relations are subjected to a
linear dynamic transformation as the transformed residuals are used in detection and
isolation tasks (Gertler, J. J., 1995) (Mironovski L. A., 1979) (Mironovski L. A.,
1980). The aforementioned analytical approach that has been commented on requi-
res error-free mathematical models in order to be effective.

Knowledge-based methods, extensively applied in process monitoring tasks,

include: Causal analysis, Expert systems and Pattern recognition (Doyle R. J. et all.,
1993).
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These techniques are based on qualitative models, which can be obtained via one
of the following ways:

— Causal modeling of the systems (Lee G. et all., 1999) (Mo K. J. et all., 1998)
(Mo K.J.etall. 1997).

— Expert knowledge (Kramer M. A and Palowitch ].B.L.,1987) (Li X, and Yao
X, 2005) (Kramer M. A. and Finch F. E., 1988) (Bakshi B.R. and Stephano-
poulos G.,1994).

— A detailed model describing the system (Nekovie, R. and Sun, Y., 1995),
(Demuth, H. and Beale, M. 1998).

— Fault-symptom based cases. (Isserman R 1993) (Yong-Guang Ma, Liang-Yu
Ma and Jin Ma, 2005).

Among the outlined supervision methods, none of them is qualified to carry out
the overall safely supervision task on the vast amount of different processes and varie-
ty of instruments. As consequence of such drawbacks, the proposed research work is
focused on a problem-solving strategy which combines into a heuristic search path
driven on the basis of a flow chart, a rule base processor with an appropriate identifi-
cation method. The proposed strategy supposes a novel, general and effective alterna-
tive on FDI sensors diagnosis. Thus, the work is centered on the task of detection and
isolation sensor faults using a model based approach which deals with a model para-
meter identification technique associated to a rule based scheduler oriented to FDI
tasks mainly applied in process supervision, including decision-making procedures
according to well-known rule-based techniques. To carry out proposed tasks, the
identification algorithm based on the collection of real-time data for transient state
operation conditions is presented using the facilities of (DeltaV ™. V.8.4.2007).

The work is organized by describing the strategies to synthesize FDI rule bases
on the basis of an analytical function approximation model based approach. Finally
an illustrative example of sensors FDI is presented. Validation is based on the results
achieved from an application on the pilot plant.

FAULT DETECTION AND ISOLATION STRATEGY

Being FDI a crucial part of an asset management task, as shown in (Chow M., 2000)
(Kusiak A. and Shah S.,2006) (Li.T., 1989), the principles of predictive maintenan-
ce apply to all machines, processes and industrial applications, where expert systems
play relevant and important role. However, the knowledge storage required for the
implementation of an expert system is significant, particularly for systems that
require decisions to be based upon the knowledge base. In fact, as stated in (Kusiak
A.and Shah S., 2006), expert systems cannot respond creatively under unexpected
scenarios or circumstances and no deterministic answer to determine when the input
values go outside a predefined range is available but rather random.
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Nevertheless, Rule Based Systems (RBS) may be used to solve difficult problems
that typically require significant human expert intervention. By emulating the exper-
tise and the decision-making ability of a human it is possible to reduce the effort and
cost of making the knowledge of multiple experts available continuously, simultane-
ously, and permanently; thereby increasing reliability and performance.

In this work it is described how the inherent advantages of RBSs can be embed-
ded into a scalable process control system. It also presents a prototype of a highly
interactive and user friendly environment that simplifies and speeds the configurati-
on of an expert system and makes it easy and intuitive for the typical plant engineer
to incrementally apply his process knowledge.

Such a tool can be used to monitor and process and to address abnormal conditi-
on management by continuously evaluating real-time and historical data, watching
for events and abnormal conditions, providing reliable diagnosis and advice, and
taking corrective actions when necessary in order to support the plant operators to
manage their monitoring operations. The core technology and functionality is
implemented using DeltaV inference engine.

Analytic modeling is the modeling technique chosen to handle process changes
detection tasks in this work. The main reason is that analytical modeling represents
the process dynamics as function of available and accessible measured variables and
parameters. Consequently it can be updated without via on-line parameter identifi-
cation.

Sensor Faults Characteristics

A sensor fault can be defined as a deviation from its normal readings. Excluding
complete failure, sensor faults are classified into four types (Abdelghani M. and Fris-
well MLI.,2007) (Qin S.J. and Li W.H., 1999): bias, drift, precision degradation, and
multiplication fault. The reading of a fully functioning sensor at time # is x*(z). Sen-
sor malfunction could cause the reading to deviate from the actual value. For bias
fault, x() is the sensor reading and can be expressed as

x(t)=x"(t)+b (1)
where 4 is constant and could be positive or negative. For the drift fault,
x(t)=x"()+a-(1—t,) ()

where a is a constant, Zis the time stamp when the drift begins. Over time the
drift fault becomes larger.
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For the precision degradation fault,
xn)=x'(0)+e 3

where € is a random variable following the normal distribution N(0,62). The value
of g usually has a larger variation than the white noise.
For the multiplication fault,

x(t)=c-x"(¢) 4)

where ¢ is a constant. In a generic case, the sensors fault scenario could be due to a
combination of the four types of faults. For this reason, the main goal is simply to
isolate the faulty sensor in order to apply a decision making strategy and a problem
solving procedure.

Proposed FDI Algorithm

In this work FDI tasks is associated with two aspects of redundancy combined
among them as required:

— Functional redundancy
— Physical redundancy

Functional redundancy deals with two or more functions describing the same
process, while physical redundancy is referred to several hardware devices applied to
measuring the same variable. Since analytical models in general don't represent
effectively the behavior of nonlinear processes, it is justified the use of back propaga-
tion neural networks (BPNN) based functional approximation techniques in nonli-
near process modeling, not used in this work.

Functional Redundancy on the FDI Procedure

Let’s consider a free fault (FF) process defined by means of an analytical function
approximation procedure (Deckert J.C. et all., 1977). With regard to functional
redundancy, to describe at least two functions of the same variable (manipulated vari-
able) first principles are to be applied. Consequently, a manipulated variable can be
described as an active function MVa, while a process inverse model provide a reactive
function MV as response to the excitation constituted by the manipulated variable.

The complete open loop process can be described by means of model based
functions as shown in (5),
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MVa=f(X,X,,.X,)

MVa'= f(X, X, ,.X,) (5)
MVr=f(Z,2,,.2Z,)

MVi'=f(Z,,Z,,..Z,, )

where MVa’and MV’ are respectively physically redundant functions of MVa and MVr.
where
X, X,,.. Xy, are inputs from hardware devices to the function M7z,
X, X,).. X\ are the physical redundant inputs to MVa’,
Z;, Z,..Zy are inputs from hardware devices to the function M7, and
Z,, Z,y,..2, are the physical redundant inputs from hardware devices to the
function MV7.

In figure 1 it is depicted the functional redundancy concept implemented on the
basis of functional approximation architectures as defined by (5)

X 73 & 73

X _T\_. MVa 7 _TMP MVr
X2 7 j Z 7} _;'
X | fX) t. 7z | fl2) t’
oY Mva' 2N

Xt ¢ AN MV

Fig. 1. Functional redundancy implemented under model based functions.

Furthermore, sub-index /V is the number of instruments assigned to the active
function, and sub-index A is the number of devices assigned to the reactive functi-
on. Described model based functions are experimentally obtained by means of an
on-line parameter identification procedure.

Under normal and FF conditions the following functional relations are fulfilled:

First principles

MVa= MVr (6)
Physical Redundancy

MVa=MVa'

MVr=MVr' @

With such premises the basis for the proposed strategy is stated.
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FDI Procedure Start FDltask froma FF |
condition -
Considering equations (5) (6) and T
(7), a FDI scheduler is developed
Fal
and represented by means of a % [Golve e proiem by
close loop sequence of tasks, means of fuman
infervention
implemented by means of the Iy o
flow-chart dePICted with ﬁgure 2. Actions:Update analytical models by applying the Identification
According this flow-chart, algarithm
. . "
starting procedure requires a safety Conclusion: l
. .. Instrumentation QLK.
operating condition. Once system No action taken

operation is verified as nominal
free-fault or safe condition, then
the diagnostic task begins. Human
operator intervention is necessary
since system reconfiguration
doesn't solve the problem of repai- J
ring or substitution faulty sensors. g::dwzf:::h::gg?ﬁ;ﬂt ggﬂgg;ﬁn

Furthermore, if at least one of the 7

sensor fails, in order to keep the Action; _
Fl by applying rule base matric

required redundancy, this problem
must be solved before to continue

Problem solving task:
Human intervention

towards the next flow-chart step. |
In Safety_critical systems, under Fig. 2. Flow-chart of the FDI scheduler.
severe situations a double redun-

dancy may be applied. In such a

case system reconfiguration consists in discard the faulty sensor thus avoiding human
intervention, but assuming the disadvantage of hardware cost increment.

The Identification procedure

Although in many recent research works reasonably efforts on neural networks
based fault detection techniques are being used, such in, in order to gets an analytical
function describing the manipulated variable M7z, as function of its device outputs
and model parameters, as well as an analytical function M7V7 describing the process
inverse model as function of the process variables and parameters, an on-line identi-
fication method is then proposed and applied. The identification procedure of both
models MVa and MV is carried out simultaneously.

Experimental identification of process dynamics has been an active area of
research in several areas of engineering. A Variety of techniques has been proposed.
In this work it will be applied a conventional one widely used in process engineering.
General nonlinear estimation uses linear estimation iteratively applied to linear
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approximations of the model until coefficients converge. On the other hand the
Extended Kalman Filter (EKF) is probably the most widely used estimation algo-
rithm for nonlinear systems. However, more than three decades of experience in the
estimation community has shown that is difficult to implement, difficult to tune, and
only reliable for systems that are almost linear on the time scale of the updates. To
overcome these drawbacks and limitations, the selected parameter estimation
method is based on the time-domain fitting of step test data.

The most direct way of obtaining a linear dynamic model of a process is to find
its parameters that fit the experimentally obtained step response data. It is based on
applying a disturbance and record the output variable x(2) and its successive derivati-
ves as a function of time. With achieved data it is possible to estimate a set of model
parameters proceeding by means of the linear least squares algorithm. In order to be
prepared to apply the estimation procedure let’s review the method by starting from
a linear model such that

y=Xc+e (8)

where y is an N by 1 vector, X is NV by K matrix, where K is the number of model
variables, ¢ is a K by 1 vector of unknown coefficients, and e is an N by 1 vector of
errors.

The vector of parameter estimates is straightforward achieved from least squares
algorithm according

§=(x"x) X"y )
where its covariance matrix is then
r[é]=5 (x"x) (10)

with s? the estimated mean squared model error.

Rule Base Matrix

A rule base matrix is developed in order to deterministically decide the faulty group.
The faulty device will be isolated by applying the properties inherent to physical
redundancy. The rule base matrix is composed by an m.x.n order, where 7 = n, which
means a square matrix. The corresponding entries of rows and columns are matched
by means of an If Then rule of the form:

IF group (a) is equal to group (r) THEN Conclusion (True or False)

60 | VOLUME VI. NUMBER 2. YEAR 2009



R. FERREIRO, R. HARDO AND J.L. CALvO

%@ MVal MVr [ MVa’ | MVr’ Every element of the rule base

matrix is the conclusion of every
processed rule that means a

MVa @@ 0 deterministic decision about the
matched group of instruments
by applying (6) and (7).

MVr |0 §§ 0 0 Table I shows the structure

of a full single redundancy set of

instruments associated by groups

identifying the rule matrix

entries. The shadowed cells are

MVr’ 0 %ﬁ not applicable.

For instance, with regard to

table I, if any device of the group

Table I. Full single redundancy rule matrix. of instruments MVr fails, then

the result derived from the fact

of matching this group against

the remaining groups of the rule base matrix, is false (0). Otherwise, is true (1),

according the decisions of the rules shown in rule matrix of table I. According to the
given explanation, the decision of the rest of table cells is a logic one.

MVa’ 0

IMPLEMENTATION PROCEDURE ON DP PROPULSION SYSTEM

In order to show the supervision procedure under described methodology, a basic
propulsion system equipped with a set of instruments for an autonomous vehicle
dynamic positioning control system is to be described

This propulsion system is specifically selected in this work to test DP propulsion
related instrumentation, being equipped with physical redundancy instrumentation
for most of the relevant variables. The application is focused on the supervision of
the instrumentation associated to the thrust forces caused by propulsion effectors.
Such vehicle is equipped with a fully redundant positioning system designed to
ensure that position monitoring can be carried out throughout all phases of ship
operation and in the specified environmental condition.

The Propulsion Model

The analysed propulsion system correspond to a shunt DC motor driven by a full-
bridge thyristor rectifier (SCR), which has separately supplied field winding and
armature (rotor) winding. The armature current is transferred from the stationary
terminals to the rotor by use of brushes connected to the rotating commutator.

In a shunt DC motor the induced armature voltage is proportional to the mag-
netic field and rotational speed. The magnetic field is a function of the field current,
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and because of saturation effects, they are in practice not proportional. However, if
neglecting the saturation, the armature voltage is:

V,=k-®(,)n=k-Ky-I,-n=K, -1 -n, (11)

where K, is the induced voltage constant, .6;’15 the magnetization (field) current, 7 is
the rotational speed, K and K are proportional constants, and @ is the motor flux.

The developed torque Q is proportional to armature current and magnetic field,
according

Q=k- 1,0, )=k I, Ky-1, =Ky, -1, -1, (12)

a

where K, is the torque constant and I, is the armature current. Since the DC
motor must be supplied from a DC source with limited voltage, field, and armature
currents, the characteristic boundary of operations will be also limited. Using expres-
sions (11) and (12) conveniently, the motor torque can be expressed as function of
the current and voltage of the armature. Furthermore the developed power is
straightforward achieved according

K
Q:l. TN'Ia'I/a
n K,
(13)
Power =0Q-n-—~
KTN

The torque control block diagram of an electric propulsion system is shown in
figure 3.

SPq Q n v

Shaft T | Vehicl;—
—>| VfD I_.l Servomotor L+O—> dynamics [* Qe dynamics —>

Fig. 3. Electric motor-propeller based propulsion scheme.

The torque Q is to be controlled by means of a variable torque/speed drive. The
load is due to the propeller torque Qp. The vehicle dynamics depends on propeller
thrust 7', hull resistances and external disturbances.
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Propulsion system dynamics

It is assumed that the propeller shaft is driven by an electric motor, which generates a
torque Q controlled by a variable speed drive (VSD) of the SCR type. The engine dyna-
mics is split-up into two parts. The first part describes the relation between the develo-
ped torque (PV) and demanded torque (SP). The linear transfer function is modelled as
a first order time constant according (R. Ferreiro, M. Casado, FJ. Velasco, 2005)

0 __ K

SP, Ts+1 (14)

where Ky is the gain constant and 7 is the time constant corresponding to the tor-
que from motor and shaft inertia loads. The mentioned second part correspond to
the shaft torque balance, being expressed as

0=11+0,+0, (15

where I, is the total moment of inertia of rotating parts, Q,is the torque developed
from the propeller and Qyis the friction torque.

Propeller thrust dynamics
The propeller thrust and torque are modelled by the following relations

T =K,pD*|n|n
P T | | (16)
5
0, =K,pD’|n|n
where D is the propeller diameter and p is the mass density of water
Thrust coefficient
T
K=ot a
0.5-p-V7°-A4,
Torque coefficient
0
K, = - (18)

T 05-p-V>24,D

Where 7/ is the relative speed of advance and A, is the propeller disc surface.
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V:=V,7+(0.7-R-n)’ (19)

B =Atan(V,,0.7-R - n) (20)

Where R is the propeller disc radius and 7} is the speed of advance (arriving
water velocity to propeller)

Advance number

J= Vs
n-D

1)

By knowing experimentally the advance number of such particular hull-propel-
ler vehicle, the speed of advance is calculated, and consequently, the relative speed of
advance, the torque coefficient and the thrust coefficient which yields the propeller
torque and propeller thrust necessary to establish the analytical redundancy.

Ship surge dynamics
The ship dynamics can be approached by the following non-linear differential

equation

mv=ROV)+(1=t)T, + Ty (22)

where  is the total mass (ship mass plus added mass), R(v) is the hydrodynamic
resistance, (1-7;) is the thrust deduction factor, 7, is the total external forces and
T,is the thrust propulsion

After rearranging past equations, and neglecting the external forces, yields the
final model for the shaft speed and vehicle speed as

K
=SP u 23
© °Ts+1 2
.1 1 5
n=T[Q—Q,-—Q,,]=T[Q—KF'n—KQ-p-D -n-|n] (24)

v=[-R(W)+(1-1,)T,]/m :;[—R(V)+(l—tr)~KT -p-D* 'n‘n‘] (25)

whose block diagram is achieved and shown in figure 4.
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Q

—bof /T »(1/s KTpD4n‘n‘(1—tT)

\—KIP Te v’ v
Qe 1I/m

p|l/s
K()pD5n|n| LK =
) (-

Fig. 4. Block diagram of propulsion system under state space phase variable model.

Implementation of the DP FDI Strategy

Given a DP propulsion plant corresponding to a marine vehicle described by means
of analytical approximation procedures under MVa, MVr, and redundant groups of
devices under MVa’ and MV7’, by applying expression (5) on (13), (15) and (16) for
the armature current, voltage and shaft speed it yields

MVa = f(SP,,1,,V,)

MV = f(SP,,I',,V",)

MVr= f(Qp,n) (26)
MVY = £(Q,.n")

where (SPQ, I,,. V) are inputs to the function MVa, (I, V) are redundant inputs to
MVa’, (n) is the input to the function MVr, and () is the redundant input to the
function MV’ With the model

Since the speed of advance 7, and consequently the advance factor / depend on
the actual dynamic characteristics of the maneuver, estimation of thrust and torque
coefficients according expressions (16-21) doesn’t provide accurate results. Due to
such ambiguity the actual measures of propeller thrust and motor current and/or
power are available and measured. At zero vehicle speed, in keeping station conditi-
ons, a well experimental approach which relates the motor torque with propeller
thrust is the used.

TP:fQ(Q):fn(n) (27)

With the balance given by (27) expression (26) is being used on the FDI task.
According (26), the corresponding rule base matrix is that of table V, in which a sin-
gle full redundancy is being applied. Consequently, applying the FDI scheduler
depicted by means of the flow-chart shown in figure 2, as part of the whole supervi-
sion system, yields the results (conclusions) of the on-line instrumentation supervisi-
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on task. If there is full evidence of correct instrumentation operation, then the plant
supervision task, which is beyond the scope of this research work, will be easier and
deterministic. It must be also taken into account that if instrumentation operation is
correct, then, standard plant FDI methods may be applied.

Simulation results

In order to verify a potential malfunction of the instrumentation (armature current,
voltage and tachometer), the redundant current sensor is manually adjusted to be
deviated from the actual value (shift) and consequently its behavior is the typical one
of a faulty sensor affected by such fault. After starting up the FDI scheduler follo-
wing the flow-chart shown in figure 2 with the rules described by (26), the FDI pro-
cess begin.

The rule base matrix which
must be processed under the
instrumentation structure is the
MVa %% 1 0 1 one of table II according the
flow-chart sequence. The results
of processing the rule base are

MVa | MVr | MVa’ | MVr’

MVr |1 gg 0 1 shown in table V, where the
group of sensors denoted as
MVa’is faulty.

MVva’ | 0 0 g@ 0 As a fault has been detec-
ted, isolation of the faulty devi-

MVE |1 1 0 gﬁ ce is rather a straightforward

action which consists in the

comparison of every device of

Table II. Detection of the faulty group of instruments the falﬂt}’ group with its redun-

(Row and column of MVz’=0) dant device. As consequence of

the comparison between the

readings on both groups of

devices it yields I #1 " Since a fault has been detected and acknowledged, it is expec-

ted to solve the problem by re-adjusting the faulty current sensor. After acknowled-

ging the human intervention, then the signal flow is returned to the origin to conti-
nue the on-line supervision task.

CONCLUSIONS

A systematic methodology to implement the supervision task of process instru-
mentation applied on the thruster equipment of a DP control system has been pro-
posed and developed. The approach combines model based approximation imple-
mented on the basis of parameter identification, with rule based strategies, both
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implemented with the facilities of an object oriented programming tool. This proce-
dure solves an important task by deterministically deciding the health of the data
acquisition system. The relevance of this fact is verified since the ambiguity on con-
ventional system FDI tasks is avoided with the applied methodology. The problem
associated with the most probable faults and decision making based on voting, as
well as the most convenient number of redundant devices is solved by the procedure
implemented by means of the developed supervision FDI scheduler.
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