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and policy-making.

Maritime transportation and insurance play pivotal roles in international trade. Both maritime and in-
surance industries are observed to follow cyclical patterns with recurrent upward and downward move-
ments. This study examines the cyclicality of maritime freight markets and marine insurance premiums,
assessing whether their cycles are synchronized. Using data from 1996 to 2019, including Baltic Dry
Index (BDI) values and global hull insurance premiums, findings confirm significant cyclicality in both
markets. Results indicate that hull insurance premium cycles lag freight market cycles by two years,
with a common cycle length of 16 years. This synchronization has implications for risk management

1. Introduction.

Seaborne trade accounts for approximately 80% of global
trade by volume and over 70% by value (United Nations Con-
ference on Trade and Development (UNCTAD), 2022). Re-
cent disruptions such as COVID-19, the Suez Canal blockage,
and geopolitical conflicts have underscored the importance of
maritime transportation. High inflation is one of the most im-
portant problems against global development. Interruptions of
supply chains because of poor connectivity and logistics prob-
lems and higher freight prices are again contributing factors to
higher prices of goods being shipped.

Shipping is one of the world’s most capital-intensive in-
dustries, requiring a rough estimate of $80 billion per year to
finance new vessels alone (Goulielmos and Psifia, 2006). Ac-
cording to a report by Allied Market Research (2021), the global
shipbuilding market will be valued at $142.52 billion in 2020
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and is expected to reach $195.48 billion by 2030, registering
a compound annual growth rate of 3.2% during the forecast
period. In addition to its transportation function, a ship is a
shipping company’s most important asset and investment ve-
hicle. Operators bear the risk of the day-to-day operation and
earnings of the vessels, while investors bear the risk of changes
in the market value of the vessel, loan defaults and various in-
ternational regulations. Thus, operators are mainly exposed to
operational risks, while investors are exposed to market and fi-
nancial risks (Yin et al. 2020). Due to the global nature of the
business and the mobility of the vessel, maritime markets are
exposed to exogenous factors such as political developments,
global crises and international regulations. Despite all modern
risk management methods, insurance is still an important, es-
sential and reliable tool for parties exposed to these risks.

The price of risk in marine insurance is set by underwriters
and depends on various factors, including the vessel’s condi-
tion, client’s loss history, management quality, navigation area,
vessel type, cargo, and the experience level of crew. Under-
writers consider the probability and monetary value of risks,
past underwriting results, recent catastrophic losses, and mar-
ket conditions influenced by capacity and congestion when cal-
culating policy prices.

Maritime markets experience price fluctuations due to sup-
ply and demand factors. They are categorized into four main ar-
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eas: new building, second-hand (sale and purchase), demolition
(scrap), and the freight market (Stopford, 2008). Transportation
costs are largely determined by freight levels, which are sensi-
tive to supply-demand imbalances. Freight levels serve as indi-
cators of the maritime industry’s health and can influence other
markets sequentially (Beenstock and Vergottis, 1989a; Been-
stock and Vergottis, 1989b).

Changes in demand for sea transportation, without signifi-
cant alterations in capacity, directly impact transportation costs,
influencing investors’ profitability expectations and vessel prices
in the short term. In the long term, capacity adjustments bring
equilibrium, resulting in cyclical patterns in maritime markets.
Ship prices are crucial for assessing total risk, particularly in
property policies, leading to fluctuations in maritime freight af-
fecting marine insurance prices similarly.

Despite the longstanding significance of maritime economics
and marine insurance in global trade, academic research in mar-
itime economics is relatively recent. Most studies on marine in-
surance focus on technical or legal aspects rather than economic
ones. This research aims to address the gap by examining the
cyclical movements in maritime freight and marine insurance
prices and analyzing their interrelationship.

The paper is structured as follows: a review of related litera-
ture on maritime economics and marine insurance, followed by
the research motivation and hypotheses, details on the data and
methods, and results. The conclusion includes final remarks,
limitations, and suggestions for future research.

2. Literature Review and Hypothesis Development.

The history of ships, trade, and related businesses is ex-
tensive and significant to global transportation. However, aca-
demic research in maritime economics is relatively recent, with
notable growth following the 1960s, largely due to globaliza-
tion (Heaver, 2012). Maritime transport is crucial for trade
competitiveness, influencing the type, volume, and value of
goods, as well as global supply chains (Valentine et al., 2013).
Key developments include the shift toward emerging markets,
transport costs, and the adaptation to ecological and social fac-
tors (Gilda, 2013).

Research in maritime economics primarily addresses freight
markets and shipping finance, driven by the volatility of freight
rates and the capital-intensive nature of the industry. Charac-
teristics such as non-storable services and heightened sensitiv-
ity to global supply and demand make investment challeng-
ing, prompting significant academic inquiry (Alexandridis et al.
2018).

Key research areas include the interdependence of maritime
markets and the influence of global economic changes. For ex-
ample, Beenstock (1985) highlighted the connection between
freight and ship markets and two subsequent studies by Been-
stock and Vergottis (1989a, 1989b) applied this model for dry
bulk and tanker markets. Kavussanos (1996) found that indus-
trial production and bunker prices positively affect freight rates,
while the stock of fleet has negative impacts. Results confirmed
that the two most important sectors of world shipping - freight

and ship markets - are interdependent, and the developments
in one will spill over into the other. Grammenos and Ark-
oulis (2002) explored the relationship between shipping stock
returns and global macro variables. Their results show that oil
prices and laid up tonnage are negatively related to shipping
stocks whereas the exchange rate variables are positively re-
lated. Bornozis (2006) examined how demand is shaped by
global economic conditions and supply by the availability of
global fleets, and that any imbalances between demand and sup-
ply have a direct impact on asset values, freight rates, and earn-
ings. Li et al. (2018) analyzed interdependencies among dif-
ferent shipping markets, revealing one-way causality running
from the dry bulk and clean tanker freight markets to the dirty
tanker and container freight markets respectively. Moutzouris
and Nomikos (2019) examined the relationship between ship
prices, net earnings and holding period returns in the dry bulk
industry. Results of the study show earnings yield to be a reli-
able indicator of the current condition of the shipping industry
and future shipping market conditions. High earnings yield to-
day reflects the current prosperous market conditions but also
predicts deterioration in future net earnings and thus, future
market conditions. Collectively, these studies underscore the
complex interdependencies in maritime trade.

Cyclicality in maritime transport has been studied empiri-
cally by numerous researchers. Goulielmos and Psifia (2006)
explain the significance of forecasting shipping cycles for suc-
cessful investment timing. They employed Rescaled Range Anal-
ysis to determine the duration of shipping cycles, aiming for
more successful shipping loans that could lead to a more stable
market. Their analysis of 379 monthly observations from the
trip dry cargo charter index between 1971 and 2002 revealed
shipping cycles of approximately 4.5 years and 2.5 years, which
were found to be non-periodic.

Chiste and Vuuren (2014) explored the cyclical behavior of
the shipping market using Fourier Analysis on daily data of dry
bulk freight earnings from January 1990 to October 2011. Over
this 21-year period, they identified bimodal cyclicality, with a
primary cycle of 7 years and a prominent cycle of 4 years. In
contrast, Papailias et al. (2017) investigated the cyclical prop-
erties of the Baltic Dry Index (BDI) and constructed economic
models to define these cyclical characteristics for accurate fore-
casting. They highlighted the economic significance of the BDI
and suggested hedging strategies for market participants. Their
trigonometric model explained 30% of the annual change in
BDI over a span of 271 months from February 1993 to Au-
gust 2015, revealing cycles of 3, 4, and 5 years and indicating
a strong cyclical pattern. These studies focused on the dry bulk
freight market and identified varying periods and characteris-
tics of cycles. The differences may stem from the data periods
analyzed or the methods used, but a common point is that dry
bulk freight markets exhibit cyclical patterns.

Research on marine insurance from a maritime economics
perspective is limited, despite its foundational role in the mod-
ern insurance industry. Instead, the literature is dominated by
studies from insurance and law professionals. Aydemir (2010)
defines terminology and specific features of marine insurance
while exploring the factors critical for assessing risk and pric-
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ing strategies in the industry. The author notes that the global
structure of the marine insurance industry is vital, as nearly
all policies adhere to globally accepted laws and regulations.
Risk sharing and transfer are more prevalent in marine insur-
ance than in other categories due to the high monetary value in-
volved. Pricing is as crucial in marine insurance as in any other
industry for financial success and sustainability, and effective
pricing requires accurate risk assessment and analysis.

Li (2017) discusses the role of marine insurance in ship fi-
nance, integrating financial, insurance, and legal perspectives.
While marine insurance effectively transfers risk to the insur-
ance pool, some risks remain uncovered due to fundamental
rules and commercial unavailability. In addition to risk trans-
fer, marine insurance can also lower capital costs, enhance lig-
uidity for shipowners and shipbuilders, and provide reassurance
for financiers.

As far as we know, no research explores the cyclicality of
marine insurance, except for that conducted by Nieh and Jiang
(2006). Their study focuses on the determinants of underwrit-
ing margins in the U.S. ocean marine insurance market and
finds that the rational expectations hypothesis, as explained by
Nieahus and Terry (1993), best fits this market. In marine insur-
ance, prices are rational and reflect the expected value of future
losses based on all available information; cycles arise due to
long claims tails and reporting lags. The distinctive features
of marine insurance, which differentiate it from other lines, in-
clude variations in coverage, exposure to risk, and regulations,
making pricing in marine insurance more complex than in any
other insurance line. The authors primarily examine the rea-
sons behind cyclicality in the market and the periods of these
cycles. They detail how cycles in the insurance business are
influenced by past losses, market imperfections, regulatory and
informational lags, past surplus, and interest rate fluctuations.
The capacity constraint theory developed by Stewart (1984)
and Bloom (1987) posits that changes in underwriting capac-
ity drive these cycles. Real frictions and imperfections lead to
a lack of capacity, negatively affecting the underwriting mar-
gin. Gron (1994) tested this theory, finding that variations in
capacity significantly impact property-casualty insurance prof-
itability, supporting the capacity constraint hypothesis. Unex-
pected decreases in capacity lead to higher future profitability
and prices. However, Nieh and Jiang (2006) argue that the
global nature of the maritime insurance business renders the
capacity constraint theory inapplicable to this insurance line,
considering the diverse factors at play.

Research on marine insurance cyclicality is limited, but there
is significant literature on cyclical behavior in insurance mar-
kets. Cummins and Outreville (1987) attribute this behavior
to institutional and regulatory lags, while Berger (1988) sug-
gests a feedback mechanism where profits impact surplus with
a delay. Niehaus and Terry (1993) argue that insurers set pre-
miums based on the present value of expected future losses,
implying that price cycles emerge only if expected losses are
cyclical, which is linked to market imperfections. Chen et al.
(1999) identify underwriting cycles in the insurance industries
of Singapore, Malaysia, and Japan, with varying lengths of
7.78, 12.01 and 13.86 years respectively.

Both maritime and insurance markets display cyclical char-
acteristics driven by supply and demand and global macroeco-
nomic conditions. The financial pricing/rational expectations
theory (Nieh and Jiang, 2006) best explains cyclicality in ma-
rine insurance. This study aims to explore the relationship be-
tween maritime freight markets and marine insurance premi-
ums by analyzing global hull and machinery premiums, BDI
values, and world merchant fleet volumes from 1996 to 2019.

Key organizations like the Central Union of Marine Under-
writers (CEFOR) and the International Union of Marine Insur-
ance (IUMI) provide vital statistics on insured vessels, claims,
and premiums. CEFOR focuses on Nordic markets, while [UMI
covers the international landscape.

Figure 1 shows annual net average premium of a vessel in-
sured in the Nordic marine insurance market with the avail-
able data CEFOR provided for the years in between 1990 and
2005 together with the average premium per deadweight ton-
nage (dwt) for the years in between 1996 and 2019 according
to [IUMI annual reports. An analysis of the annual net average
premium for vessels in the Nordic market shows a clear cyclical
pattern, with peaks in 1993 and 2010 and troughs in 1999 and
2019.

Figure 1: Annual net average insurance premiums of vessels.

[%6.00

Pt

[~34.00

1990 1995 2000 005 010 2015 2020

Source: Net average premium per vessel for 1990-2005
(CEFOR annual reports 1990-2005) and average premium per
dwt for 1996-2019 (IUMI annual reports 1997-2020).

Underwriting performance in marine insurance is closely
linked to general economic conditions (Grace and Hotchkiss,
1995) and reflects trends in the maritime industry. Key factors
influencing marine insurance pricing include the vessel’s age,
condition, and value (Aydemir, 2010), meaning that fluctuations
in vessel values directly impact insurance rates.

The relationship between global macroeconomic conditions,
shipping markets, and marine insurance can be summarized as
follows: an increase in transportation demand, without a corre-
sponding rise in fleet capacity, boosts maritime freight markets.
This growth attracts investment, raises vessel demand, and con-
sequently drives up both vessel and insurance prices.
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Based on this understanding, the study proposes three hy-
potheses:
H;: Maritime freight markets exhibit cyclical behavior.

Hj,: Marine insurance premiums demonstrate cyclical trends.

Hj: Maritime freight cycles and marine insurance premium
cycles are positively synchronized.

3. Data and Methodology.

This study examines maritime freight markets using annual
averages of monthly Baltic Dry Index values (BDI;), as shown
in Figure 2. Marine insurance is assessed through annual av-
erage premiums per deadweight tonnage (dwr), calculated by
dividing total global hull premiums (HP;) by the annual world
merchant fleet volumes from 1996 to 2019. Data from IUMI’s
annual reports provides the total written global hull insurance
premiums. Average unit hull premiums (P,) are obtained by di-
viding total hull premiums by fleet volumes. To analyze cycli-
cality in global marine insurance, we use total written global
hull gross premium data from IUMI, as CEFOR data is not
available post-2005. Figure 1 highlights the concordance of
these data sets.

Figure 2: Baltic dry index (BDI).
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Source: Baltic Exchange (2020).

A fundamental method for identifying cycles in a time se-
ries is through the detection of turning points, first introduced
by Burns and Mitchell (1946) and later refined by Harding and
Pagan (2008). They define peaks as local maxima and troughs
as local minima in the series ??7,. To identify cycles, one must
locate these turning points and delineate the periods of expan-
sion and contraction (Harding and Pagan, 2002). Harding and
Pagan (2001) establish that a peak occurs at time ¢ if the value
is higher than those in a symmetric window of k observations
on either side, while a trough is defined similarly but for lower
values.

Peak: y, >y, for t—k<s<t and t+k>s>1t,

ey

Trough: y, <y for t—k<s<t and t+k> s>t

To analyze cycles, the time series Y; can be viewed as a
trigonometric function made up of periodic components, rep-
resented by sine and cosine waves (Harding and Pagan, 2008).
Papailias, Thomakos, and Liu (2017) applied this model in fore-
casting the Baltic Dry Index (BDI), examining periods of 3, 4,
and 5 years. They compared a model using only cosine waves
to a composite model that included both sine and cosine waves,
finding that the composite model provided a better fit.

The model can be expressed as:

Y, =a+ Z {/3,- cos(2rA;t) +y; sin(27'r/ljt)} e, t=1,....,T (2

J=1

In the formula above, the term A; indicates the horizon-
tal stretch or in other words the frequency, 8; and y; control
the amplitudes of the sinusoidal waves. It is possible to com-
pare different cyclical time series and determine potential rela-
tionships between them by using these duration and amplitude
statistics. The cyclical components of a time series can be an-
alyzed based on how well periodic patterns align with the fre-
quency of these models. Duration refers to the time it takes to
complete one cycle, or the wavelength between two crests or
two troughs.

When we identify these two measures of amplitude and du-
ration, we can gain insights into the underlying patterns of the
time series. When we detect these two measures of ampli-
tude and duration which are perpendicular to each other on a
graphic, the hypotenuse becomes the path followed by the vari-
able (Harding and Pagan, 2008). Another important point to
understand is whether the two cycles are in the same phases
at an exact point of the time which shows the synchronicity of
cycles.

To examine the synchronization of two cyclical series, it’s
beneficial to convert time series data into binary indicators of
expansion (St=1) and contraction (St=0), following the meth-
ods of Burns and Mitchell (1946) and Harding and Pagan (2006).
After identifying turning points, the cycle is divided into expan-
sion phases (from trough to peak) and contraction phases (from
peak to trough). This binary series effectively indicates which
phase is occurring at any given time. SPPS (strong perfect pos-
itive synchronization) refers to the situation where the cycles
are perfectly aligned. Strong non-synchronization (SNS) oc-
curs when they move independently. Harding and Pagan (2006)
use a moment method framework to analyze binary data from
two cycles, focusing on unconditional and conditional densi-
ties. The authors set the moment conditions (3) and (4) for
strong perfect positive synchronization null hypothesis and con-
dition (5) for strong non-synchronized cycles null hypothesis.

SPPS (i) : E(Sy) - E(Sx,) =0 3)
SPPS (ii) : E(Sy,)— E(Sx,Sy)=0 (4)
SNS: E(Sx,Sy)—E(Sx)E(Sy)=0 (5)

The unconditional density of the two series is checked by
applying (3) and conditional density is checked by applying (4).
If both (3) and (4) are confirmed, the two series are perfectly
synchronized. Rejecting (3) and/or (4) leads us to reject the
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strong perfect positive synchronization between the two cycles.
If (5) is confirmed, it can be said that the series are strongly non-
synchronized. Rejecting all three hypotheses shows that cycles
are neither perfectly synchronized nor non-synchronized, but
synchronized to a less than perfect degree. In this latter situa-
tion, examining the components of the correlation coefficient
of the series (py) explained in (6) would be useful to check
co-movement and interpret the degree of the synchronization
(Harding and Pagan, 2006).

_ PrPr(Sx, = 1,8y, = 1) = [PrPr(Sx, = 1) PrPr(Sy, = 1)]
JPrPr(Sx, = D PrPr(Sx, = 0) \/PrPr(Sy, = 1) PrPrSy, = 0)

o ©)

The current study uses the following test statistics Harding
and Pagan (2006) propose for testing the two null hypotheses of
strong perfect positive synchronization and strongly non syn-
chronized cycles explained in equations (3), (4) and (5):

SPPS(i) : fis, — fIs,
SPPS(ii) : ps — 1
SNS : ﬁs

Furthermore, Harding and Pagan (2006) define the concor-
dance index exhibited in equation (7) as another measuring tool
of the synchronization of cycles. The concordance index (1)
checks what fraction of the time the cycles are in the same

phase.
~ 1 T T
== {; sx,syt+;(1—sx,)(1—sy,)} )

The concordance index has a maximum value of unity when
the contraction and expansion periods of studied time series
overlap, i.e. Sx, = Sy, for all t. It will have a minimum value of
zero when one series is in expansion the other is in contraction,
i.e. Sx, = (1 - Sy,) forall #. Hence, concordance index /=1 cor-
responds to strong perfect positive synchronicity and /=0 corre-
sponds to strong perfect negative synchronicity. If the correla-
tion between the two series is 0, then the concordance index be-
comes equal to 0.5 which means strong non-synchronicity be-
tween two series. In other words, the concordance index shows
us the percentage of the time that cycles are in the same phase.
Interpretation of the concordance index may be misleading in
the instance that p; = 0, so a prior check of the correlation
between the two series is essential.

4. Data Analysis and Results.

4.1. Descriptive statistics.

Table 1 presents the descriptive statistics of P,, the unit hull
premium per dwt in US dollars and BDI;, the mean annual
Baltic Dry Index values in US dollars. The mean value of P,
is 4.97 USD per dwt with a standard deviation of 1.16 USD
per dwt, while mean for BDI, is USD 2,127.22 with a standard
deviation of USD 1,700.48 based on the data from 1996-2019.
Skewness values indicate that P, is more symmetrical (0.15)
compared to BDI, (1.88). Furthermore, P; has lighter tails (kur-
tosis -1.54) than normally distributed data, while BDI; (kurtosis

3.22) exhibits heavier tails. Overall, neither dataset follows a
normal distribution. BDI, demonstrates more pronounced peaks
than P,, whereas P; is more symmetrical. Refer to Figure 3 for
a visual comparison of both datasets.

Table 1: Descriptive statistics for P, and BDI,.

P; BDI;
Range $3.21 $6,559.42
Minimum $3.47 $692.83
Maximum $6.68 $7.:252.:25
Mean $4.97 $2,127.22
Standard Deviation $1.16 $1,700.48
Skewness 0.15 1.88
Kurtosis 21554 3.22

Source: Authors.

Figure 3: P, - BDI, values among the years 1996-2019.
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Despite both time series not being normally distributed, pre-
vious studies suggest that Pearson’s correlation is the most suit-
able tool to measure the relationship between the two series
(Harding and Pagan 2006, Chiste and van Vuuren 2014, Pa-
pailias et al. 2017). The results presented in Table 2 indicate

a significant positive correlation (o = 0.636, p = 0.001)
between BDI, and P; series.
Table 2: Correlation between P; , P;,, and BDI,.
P Prez
P 0.636%** 0.781***
BDI; Sig. (2-tailed) 0.001 0.000
N 24 22

*** Correlation is significant at the 0.01 level (2-tailed).

Source: Authors.

4.2. Identification of Turning Points

To identify turning points in the data series and assess cycli-
cality, Harding and Pagan (2002) used a window size of ‘k’
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equal to 2 for quarterly data. In this research, however, a sym-
metric window size of k equal to 5 yielded clearer results for
annual data. Table 3 presents the peak and trough years of in-
surance premiums and freight rates using this approach.

Table 3: Turning points of P, and BDI, between 1996 and 2019.

Peak Trough  Peak Trough
P: 1996 1999 2010 2019
BDI - 1998 2007 2016

Source: Authors.

The analysis shows that from 1996 to 2019, there are one
peak and two troughs for BDI, and two peaks and two troughs
for P,. The first trough in BDI, is one year before the first trough
in P, and BDI, peak is three years ahead of the P; peak. Second
troughs have three years difference. There is an average two-
year lag in turning points and this proximity of turning points
suggest a positive relationship between the two series.

Only one clear completed cycle is identified both BDI; and
P, during this period. Although the unit hull premium displays
two cycles, the lack of data before 1996 complicates the classi-
fication of the first cycle. However, the peak and trough points
indicate cyclicality in both series.

Detecting these turning points can aid in constructing a trigo-
nometric model to analyze cycle periods and synchronicity. To
further investigate potential lag in synchronicity, a cross - cor-
relation analysis was performed, as illustrated in Figure 4.

Figure 4: Cross Correlation Coeficients.

BDIt with Pt

Lag Number

Source: Authors.

The analysis of freight market rates (BDI;) and hull premi-
ums (P;) reveals that the highest correlation of 0.758 (standard
error = 0.213) occurs with a two-year lagged hull premium.
Three-year lagged premiums show a correlation of 0.723 (stan-
dard error = 0.218), while one-year lagged premiums have a
correlation of 0.708 (standard error = 0.209). These lagged
correlations surpass the synchronous series correlation of 0.636
(standard error = 0.204).

4.3. Trigonometric Regression.

The model follows the formula (2) from Harding and Pa-
gan (2008) and Papailias, Thomakos, and Liu (2017), using

A; to represent cycle frequencies. Based on cross-correlation
results, the analysis is applied to a two-year lagging hull pre-
mium series. Tests reveal a common cycle period of 16 years
for both data series, with significant forecast models demon-
strated through trigonometric regression, as summarized in Ta-
ble 4. This approach confirms cyclicality in maritime freight
markets and marine insurance premiums, supporting H; and
H,. The regression model is expressed as:

BDI, = 2548.79** — 2033.30"** cos(f—’; % l) -104.32 sin(% * z)

D . . 27 s .| 2T
P, =5276"" —1.286 COS(E * t) +0.932 sm(l—6 * t)

Table 4: Trigonometric Regression Results for BDI, and P,
(standard errors).

BDI, B
Constant 2548793 %%* 5.276%**
(214.282) (.082)
cos 2m/16 t -2033.304%%* -1.286%*%*
(302.513) (.116)
sin 2m/fl6 t -104.323 93 2%F*
(289.438) CLLD)
R2 684 901
Adjusted R? .654 .892
No observations 24 24

*#% Significant at the 0.01 level (2-tailed).

Source: Authors.

65% of the variation in BDI; values and 89% of the varia-
tion in P, are explained by the trigonometric model where the
cycle duration is considered as 16 years. Although sine wave is
not a significant variable for the BDI; model, cosine wave is sig-
nificant for modelling freight rates. However, both cosine and
sine waves are explanatory in describing hull premiums. Figure
5 displays a visual representation of how well both models fit
the data.

Figure 5: Trigonometric model fits of BDI, and P,.

000 - -veoe

%]

71— T ————
1956 1950 2000 2002 2004 2006 2008 2010 2012 204 206 208 1006 1008 2000 2002 2004 2006 2008 2010 2012 2014 W6 0n8

Source: Authors.
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4.4. Testing synchronization.

The duration of the cycles in P; and BDI, is approximately
16 years, as indicated by trigonometric regression results. While
the cycle durations are the same, there is a significant difference
in amplitudes. P, values increase by about two times, whereas
BDI, values increase by over 10 times, indicating that BDI, has
a steeper trajectory.

Binary indicators S pp;, and S p, were created to perform
synchronization tests using formulas (3), (4) and (5). These
tests were conducted on both real-time data with no lag and
data with a two-year lag, based on cross-correlation analysis
results.

Table 5: Correlation between Sp, , Sp,,, and S gpy,.

SPt SPr+z
D 418% T30
SBD;,: Sig. (2-tailed) 042 .000
N 24 22

*%%* Correlation is significant at the 0.01 level (2-tailed).
* Correlation is significant at the 0.05 level (2-tailed).

Source: Authors.

Table 5 shows correlation results for both applications, with
and without lag. The correlation between the S pp;, and S p,
(0.418) is significant at 5% level whereas the correlation be-
tween Spp;, and Sp,, (0.730) is stronger and significant at
0.1% level.

Table 6: Synchronization test of S gp;, and Sp,,,.

SPPS{i) SPPS(ii) SNS
Bs- 1= -0.2607 Bs= 0.7303
fsy- fisy -0.04545
standard robust standard robust
(HAC adjusted) (HAC adjusted)
r -1.77 -1.756 4.781 4.753
i -0.29519
5.8 0.1528 0.1536 0.1528 0.1536
p-value 0.7693  p-value 0.0928  0.0944 0.0001  0.0001

Concordance Index (f] =0.86

Source: Authors.

Table 6 shows the results of the synchronization test for
Sppr, and S p,,,. SPPS(i) and SPPS(ii) cannot be rejected for the
series S gpy, and S p,,, (p =0.7693 and p = 0.0928 respectively),
while SNS is rejected ( p = 0.0001). The correlation coefhi-
cient indicates strong positive synchronization between S ppy,
and S p,,, (Table 5). The concordance index (f ) shows that S gpy,
and S p,,,are in the same phase %86 of the time (Table 6).

Table 7 presents the results of the synchronization test for
S gp1, and S p,. SPPS (i) cannot be rejected (p = 0.7784), while
SPPS(ii) and SNS can be rejected (p = 0.0058 and p = 0.0372
respectively). Together with the less significant correlation co-
efficient and concordance index (/) value slightly over 70%,
analysis results confirm that there is positive synchronization
between the series, S pp;, and S p,. Yet this synchronization is
not as strong as the one found between P; and BDI, .

Table 7: Synchronization test of S gp;, and S p,.

SPPS(i) SPPS(ii) SNS

pg- 1==-0.5819 py=0.4181

fisy- fisy -0.04167
standard  robust
(HAC adjusted)

standard robust
(HAC adjusted)

-3. -3.085 2 2}
G 0.2831 3.0040 -3.0853 1589 22
s.e 0.1937  0.1886 0.1937  0.1886
p-value  0.7784 p-value 0.0065  0.0058 0.0420 0.0372

Concordance Index (f) =0.71

Source: Authors.

With heteroskedasticity-adjusted standard errors, all corre-
lation tests yielded the same accept/reject decisions, indicating
that the results were robust. Analysis results confirm Hypoth-
esis 3 which suggest a positive synchronization between S gpy,
and § p,, however the findings show that the positive synchro-
nization between S gp;, and S p,,is even more significant. The
findings indicate a synchronized significant cyclicality between
freight rates and hull premiums with a 2-year lag.

4.5. Forecasting Models.

Four forecasting models were formulated to predict hull
premium values based on historical freight market rates. Ta-
ble 8 summarizes all four regression models (A to D), along
with the results of the trigonometric regression model (E).

The first three models (A to C) are simple linear regression
models constructed using BDI,_;, BDI,_,, and BDI,_3, respec-
tively. These models demonstrate the signaling power of freight
rates on future hull premiums. Among them, it is expected that
Model B, which incorporates a two-year lag in maritime freight
markets (BDI,_,), has the highest R? value. Figure 6 illustrates
the fit of Model B, which exhibits a strong explanatory power
with an R? value of 61%.

The subsequent model (D) combines the values of BDI,_,,
the most significant BDI lag, with the trigonometric regression
model. This model demonstrates the best fit among all the mod-
els considered with an adjusted R?> of 0.890, as illustrated in
Figure 7. Model D retains trigonometric variables significant
for forecasting BDI cycles (see Table 4). However, including
both BDI and trigonometric variables as dependents introduces
collinearity issues, evident by the lack of statistical significance
of BDI,_; in model D. Ultimately, a model for marine insur-
ance that merges the cyclical nature of premiums with maritime
freight rates does not yield superior results. The trigonometric
model (Model E) demonstrates 89.2% explanatory power and
serves both to highlight cyclicality and as an effective forecast-
ing tool.
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Table 8: Regression Results for hull premiums (standard er-
rors).

A B c D E
3.865%++ 37670 3.802%% 5421 %¢ 5.276%%*
B
Constant (279) (-265) (.285) (.259) (.082)
[0005%#+
BDI., (.000)
0053%# -0.000057
BDI,_, - (.000) - (.000)
0051 +%
BDI— (.000)
992k
cos s (.168) -1.286%%*
16 (.000)
o 1372k 930%#x
sing * - i i (.195) (.000)
R 0526 0.610 0.581 0.906 0.901
Adjusted R? 0.503 0.590 0.559 0.890 0.892
‘No observations 23 2 21 22 24

*xk Significant at the 0.01 level (2-tailed).

Source: Authors.

Figure 6: Model B fit - Yp,=a+yBDI,;_+¢;.

%800 ¥Pi2

$7,00-]

F5,00

%5,00

F4 007

F3,00

T T T T T T T T T T T
1998 2000 2002 2004 2006 2008 2010 2012 2014 2016 2018

Source: Authors.

Figure 7: Model D fit - Yp,a+Bcos(3Z st)+ysin(3Z «t)+y+BDI;-2+&.
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Conclusions.

This study examines the relationship between marine insur-
ance and maritime freight markets. It utilizes annual reports
from the International Union of Marine Insurance (IUMI) and
the monthly mean data from the Baltic Dry Index to analyze
cycles in these markets by identifying turning points in the data
series. The analysis of peaks and troughs indicated cyclical be-
haviour in both series, enabling further examination of the cycle
characteristics.

The proximity of the turning points and the high correlation
coefficient suggest a positive relationship between the two se-
ries, particularly with one to three years of lag. Cross-correlation
analysis revealed the strongest correlation with a two-year lag
applied to hull insurance premiums.

To evaluate the cyclicality and determine the cycle lengths,
trigonometric regression was employed. The trigonometric mod-
els indicated a shared cycle between the Baltic Dry Index (BDI,)
and annual average premiums per deadweight ton (Pt), with a
notable common 16-year main cycle between two-year lagged
hull premiums and freight markets. This common cycle rein-
forces the positive relationship observed between the two se-
ries.

Although synchronization tests could not find a strong syn-
chronization for unlagged freight markets and hull premiums,
the test results of Spp;,, and Sp, confirmed the presence of
strong perfect positive synchronization (SPPS) between the lagged
series, thus supporting the study’s hypothesis of synchronized
cycles in maritime freight and marine insurance premiums with
a lag of two years in the premiums. The concordance index
value indicates that the two series are in the same phase 86% of
the time throughout the data period.

Additionally, four forecasting models are developed to es-
timate hull premiums (P,) based on the BDI observations from
prior years. Although all models proved significant, the model
that provided the best fit incorporated BDI,_, values alongside
a trigonometric regression model. This two-year lag in the
best-fitting model allows policymakers to plan in advance. The
trigonometric model, on the other hand, reveals the cyclical
nature of the market, identifies forthcoming peak and trough
years, and serves as a useful forecasting tool. Together, the si-
multaneous use of both models offers deeper insights into the
industry and equips policymakers with better strategies.

Despite the long and rich history of maritime transporta-
tion and marine insurance, no previous studies have explored
the cyclicality of global marine insurance to uncover common
cycles and explain the relationship between maritime freight
markets and the marine hull insurance market, to our knowl-
edge. This study clarifies the relationship between these two
markets and constructs forecasting models that would benefit
professionals in the insurance, international trade, and logistics
industries, as well as investors.

The importance of this research is significant for profes-
sionals and key players in the maritime industry, including ship
owners, charterers, insurers, and brokers. Additionally, traders
may be indirectly affected by developments in these two mar-
kets, as changes in transportation costs can impact the prices of
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goods and raw materials.

The forecasting models developed in this study can assist
these stakeholders in better assessing the current market sit-
uation, predicting future developments, and making informed
decisions. Shipping is a capital-intensive industry, making bud-
get planning essential for maintaining or improving competi-
tiveness in the market. Consequently, these forecasting models
would enable ship owners to estimate their insurance expenses
more accurately and develop a more precise budget for the up-
coming years.

Insurers can also benefit by making more accurate predic-
tions about the marine insurance market by analyzing current
trends in the freight market and adjusting their positions accord-
ingly. Charterers, brokers, and traders can improve their fore-
casts and anticipate market changes by taking insurance prices
into account as well.

All stakeholders, including investors, insurance companies,
and insurance buyers, stand to gain from effective forecasting.
Benefits include lower costs and prices, the ability to take ad-
vantageous positions based on market trends, and the develop-
ment of effective strategies.

Risks are identified, measured, analyzed, and managed us-
ing appropriate techniques. The cyclicality examined in this pa-
per indicates whether marine insurance market prices are high
and helps determine if the insurance market is experiencing a
hard or soft market stage. In hard market stages, insurance poli-
cies tend to be more expensive, and underwriting standards be-
come stricter. During these periods, decision-makers may shift
to risk retention strategies instead of relying on insurance risk
transfer strategies.

This research enables decision-makers to understand the dy-
namics of the cyclicality of shipping revenues and marine in-
surance. When freight rates increase, insurance premiums also
rise. As shipping companies see their revenues grow, they can
afford higher insurance expenses and benefit from tax deduc-
tions associated with insurance. However, more expensive in-
surance policies can reduce profits for shipping companies.

Following the peak of freight rates, the revenues of shipping
companies begin to decline. Despite this decline, insurance re-
mains costly, and underwriting practices remain stringent. This
situation does not last long; within two years, insurance com-
panies start to lower their prices to attract shipping clients.

By analyzing the dynamics and overarching trends high-
lighted in this research, stakeholders—such as investors, insur-
ance companies, and insurance buyers—can better assess the
current market situation, anticipate future developments, and
make informed operational and strategic decisions. This study
indicates that the freight market reached its peak in 2007. The
forecast model predicts a recurring cycle of 16 years, which
accurately anticipated the downturn in freight prices observed
after 2022, a trend visible in the current freight market. Addi-
tionally, the model forecasts a similar peak in insurance premi-
ums expected in the following next two years, followed by a
sequence of declines thereafter.

The primary limitation of this study was the restricted times-
pan of the available underwriting data, which only extends back
to 1996. This lack of historical monthly or quarterly data in

marine insurance constrains the analysis of potential sub-cycles
within the main cycles observed in the data series. Further-
more, due to the global nature and inherent mobility of the
maritime industry, a regional analysis was not feasible. Ad-
ditionally, the inability to backtest the forecasting model was
a significant drawback, as the data set only encompassed one
complete cycle.

For further research, we recommend exploring the relation-
ship between hull insurance prices and the conditions of other
maritime markets, including newbuilding, sale and purchase,
and demolition. Additionally, incorporating marine cargo in-
surance premiums and/or protection and indemnity (P&I) calls
into this study could be beneficial. Given the lack of historical
data prior to 1996, repeating this study in the future with ad-
ditional data would allow for an assessment of the consistency
of findings and models over time, as well as generate enough
observations to backtest the forecast model.

Abbreviations.
BDI Baltic Dry Index
CEFOR Central Union of Marine Underwriters
DWT Deadweight tonnage
IMF International Monetary Fund
1UMI International Union of Marine Insurance
UNCTAD United Nations Conference on Trade and

Development
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