Journal of Maritime Research, Vol. VI. No. 11, pp. 83-98, 2009

JMR Copyright © 2009. SEECMAR

Printed in Santander (Spain). All rights reserved
ISSN: 1697-4840

BAYESIAN VISUAL TRACKING FOR
INSPECTION OF UNDERSEA POWER AND
TELECOMMUNICATION CABLES

A. Ortiz! and J. Antich?2

Received 26 September 2008; received in revised form 8 October 2008; accepted 10 June 2009

ABSTRACT

The surveillance and inspection of underwater installations such as power and
telecommunication cables are currently carried out by trained operators who, from
the surface, guide a Remotely Operated Vehicle (ROV) with cameras mounted
over it. This manual visual control is, however, a very tedious job that tends to fail if
the operator looses concentration. This paper describes a tracking system for
underwater cables whose main objective is to allow an Autonomous Underwater
Vehicle (AUV) to video-document the whole length of a cable. The approach is
based on Particle Filters (PF) because of their natural ability to model multi-
dimensional multi-modal probability density functions, what allows handling in a
more appropriate way the ambiguities which naturally arise from undersea environ-
ments. Extensive experimental results over a test set of more than 10,000 off-line
frames, for which a ground truth has been manually generated, have shown the use-
fulness of the solution proposed. All those images come from inspection runs cap-
tured by ROVs navigating over real power and telecommunication undersea cables.
Besides, on-line results obtained from an unmanned vehicle guided by the cable
tracker in a water tank are also available and are discussed in the paper.
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INTRODUCTION

Due to the particularly aggressive conditions to which undersea cables are exposed,
the feasibility of such installations can only be guaranteed by means of a suitable
inspection programme. It must provide timely information on the current state of
the installation or about potentially hazardous situations or damages caused by the
mobility of the seabed, corrosion, or human activities such as marine traffic or fish-
ing (Iovenitti et al., 1994; Whitcomb, 2000).

Inshore, divers can take care of part of the maintenance programme, but offshore
—with increasing depth— Unmanned Underwater Vehicles (UUV) are preferably
used. In such a case, the surveillance and inspection tasks are carried out using video
cameras attached to Remotely Operated Vebicless (ROV') which must be steered by
well-trained operators in a support ship. Such a manual visual control is a very
tedious job and tends to fail if the operator looses concentration. Besides, undersea
images possess some peculiar characteristics which increase the complexity of the
operation: blurring, low contrast, non-uniform illumination and lack of stability due
to the motion of the vehicle, to name but a few. Moreover, ROV’ are connected to
the support vessel by means of an umbilical cable which, on the one hand, requires a
Tether Management System (TMS) and, on the other hand, due to its rigidity and
floatability, limits the maneouverability of the vehicle as well as its working area.
Therefore, the automation of any part of this process can constitute an important
improvement in the maintenance of this kind of installations, with direct impact on
the reduction of the number of errors, task execution time and monetary costs.

Apart from other solutions based on other sensors (e.g. acoustic), one form of
automation based on vision cameras is the mere recording on video of the whole
length of the cable, followed by the off-line analysis of the images acquired. A more
sophisticated solution would also include a defect detection module, which would
prevent the system from recording those frames in which the cable appears in good
condition. In any case, in order to video-document the cable, the AUV control archi-
tecture must command the vehicle so as to let it fly over the cable, what leads to the
tracking, frame by frame, of the pose (i.e. the position and the orientation) of the
cable, in order to confine it within the fie/d of view (FOV') of the camera during the
mission. Thanks to the special visual features that artificial objects present, which
allow distinguishing them in natural scenarios such as the seabed even in very noisy
images, the automatic guidance of an AUV for such maintenance/inspection tasks
by means of visual feedback turns out to be feasible. However, distracting back-
ground, such as rocks or algae growing on top and nearby cables, complicate the
detection and tracking. Besides, ambiguities may occur when rocks or marine growth
form shapes and textures that resemble a cable.

A novel tracking system for elongated structures, such as the aforementioned
cables, was described in (Wirth et al., 2008). The approach was based on Particle Fil-
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ters (PF) (Arulampalam et al., 2002; Isard and Blake, 1998) because of their natural
ability to model multi-dimensional multi-modal probability density functions, what
allows handling in a more appropriate way the aforementioned ambiguities. This
property of PFs makes them of more general application than other popular sto-
chastic approaches like the Ka/man Filter and related variants (Chen, 2003; Ristic et
al., 2004), although, as it is well known, at the expense of a larger computational cost.

This paper describes an evolution of the previous tracking system which allows
considering different types of cables according to their visual appearance and pres-
ents an extensive set of experimental results which show the usefulness of the
approach. More precisely, results for off-line processing of an extensive set of more
than 10,000 images of real cables are provided. Since ground truth data have been
manually generated for the image set, quantitative performance data for the cable
tracker is available. Results of several experiments of autonomous cable tracking in a
water tank by means of a UUV are as well available and are discussed in the experi-
mental results section.

The paper is organized as follows: section 2 briefly enumerates other approaches
for visually tracking undersea cables and pipes; section 3 describes in detail the parti-
cle filter-based approach; section 4 summarizes the most relevant results gathered so
far about the performance of the tracker; and, finally, section 5 concludes the paper.

RELATED WORK

Several proposals can be found regarding visual cable and pipeline tracking and
inspection. On the one hand, due to the line-like appearance of this type of installa-
tions, several groups have proposed trackers using essentially edge maps and the
Hough transform: Matsumoto and Ito (Matsumoto and Ito, 1995) to follow power
cables, Hallset (Hallset, 1996) to track a pipeline in a network of pipelines, and Bala-
suriya and Ura (Balasuriya and Ura, 1999) for telecommunication cables. On the
other hand, Zingaretti et al. (Zingaretti et al., 1996) developed a system which
detected underwater pipes and some other accessories attached to them using statis-
tical information obtained from selected areas of the image. Rives and Borrelly stated
the vehicle control problem as a visual servoing application and proposed a solution
for it (Rives and Borrelly, 1997). Grau et al. (Grau et al., 1998) proposed an approach
based on texture descriptors learnt from the appearance of the cable and the back-
ground in a previous stage. Ortiz et al. proposal involves, due to the complexity of the
images to be processed, a first step of image segmentation followed by a second step
where the cable sides were reconstructed from the contours of the resulting regions
(Ortiz et al., 2002; Antich and Ortiz, 2003). Asif and Arshad (Asif and Arshad,
2006), in a similar way, also proposed, through a quite complex algorithm, a cable
sides reconstruction step after the detection of image edges. More recently, Inzartsev
and Pavin presented a tracker for narrow cables mixing an algorithm for detecting
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the longest straight line on the current image and the use of electromagnetic sensors
to improve the tracking performance (Inzartsev and Pavin, 2008).

THE PARTICLE FILTER

PFs approximate probability density functions by a set of IV weighted paricles,
the sample set S ={(s{), 7)) | i = 1,...,V}. Each particle represents a particular (hypo-
thetical) configuration s of the variables (i.e. one state) in the state space, together
with an importance weight 7, where the szate model and the state space must be cho-
sen for the given application. The evolution of the sample set is defined by two mod-
els: the movement model, which defines how the particles are moved in state space
from one time step to the next, and the observation model, which is used to weight
the particles according to a given observation (e.g. a camera image). The adequate
combination of all these models within the particle filter paradigm allows estimating
sequentially the likelihood of the cable pose: i.e. for every frame in the video
sequence, the previously computed probability density function of the cable parame-
ters is used to predict —via application of the movement model— the cable pose in
the next frame; subsequently, the probability density function is updated by means of
the observation model; the most appropriate cable pose estimate is finally deter-
mined from the resulting density. The following sections describe in detail the dif-
ferent models adopted for the cable tracker here described.

Cable Model

Figure 1(b) illustrates the model chosen for the undersea cable as it appears in cam-
era images (see figure 1(a) for an example), while the state components are enumer-
ated in table 1. As can be observed, the cable is modeled by two bi-dimensional
straight lines separated by the apparent width the cable shows in the images, what
implicitly assumes the cable does not exhibit an appreciable curvature in the images
because of its rigidity or due to the distance to the sea bottom at which the vehicle
navigates. While tracking a cable, the underwater vehicle is supposed to navigate at a
constant distance to the seabed. Therefore, the vehicle only changes its yaw angle
and performs longitudinal translations, being its movements confined within a 2D
plane parallel to the ground.

In case of narrow cables, such as the ones used in telecommunications, the cable
model can be further simplified to just one straight line, which would in general cor-
respond to the cable main axis in the image. Such simplification is straightforward
from the state model defined, just setting w = 0 and 3 = 0. In this way, the vehicle can
be prevented from having to navigate extremely close to the seabed in order to “see”
in the images a cable thick enough so as to allow the image processing algorithms to
discriminate the two straight lines corresponding to the cable sides.
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Several other benefits result from the adoption of this model for both thick and

narrow cables:

— it allows avoiding or at least diminishing to an acceptable level the problem
with suspended particles due to vehicle propellers when navigating close to
the seabed;

— keeping constant the distance to the seabed is no longer critical provided the
cable in the images can still be correctly modeled by a single line; and

— since the vehicle does not need to navigate close to the seabed, the part of the
scene within the FOV of the camera enlarges, making more difficult to have
the cable disappearing in the images.
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Figure 1: (a) Image of an undersea power cable. (b) Cable model (the coordinate system
origin is at the center of the image).

Component Description
d Distance to cable centerline
o Angle of cable centerline
w Cable width
B Cable skew

Table 1: Cable model components.

Movement Model

In accordance with the previous assump-
tions, the overall transition of a state x =
(d, o, w, B) from time ¢ to #+1 has been
defined, by means of a constant velocity
model for the cable distance and angle

(Gustafsson et al., 2002), as:

X =X (v, Aw, AB Ay, AT Q)

where the cable state has been augmented with an instant rotation velocity v, and an
instant translation velocity vy so that x™ = (d, 0, w, B, vs vg). In equation (1), Avg,
Avg, Aw and AB account for unmeasured or unknown components in the state
dynamics (accelerations in cable distance/angle or velocities/accelerations in cable
width/skew). In this work, they all are assumed small and, thus, are modeled as
Gaussian random noise. On the other hand, in case of tracking narrow cables, the
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state components relative to cable width and skew are removed or set permanently to
0, as indicated before.

At each time step, the sample state 57/ represented by each particle (i) is modi-
fied accordingly to the previous model:

50 =50+ 01,0,0,0,0) +(G(07).G(62).G(&)).G(0).G(E).G(T ). (2)

t+1 sV o
where G(62) represents Gaussian zero-mean random noise. In particle filters termi-
nology, the addition of the instant velocities is called Zriff and the addition of the
random noise is the diffusion.

This model assumes that the different state components are mutually independ-
ent, which does not need to be the case. However, the different experiments per-
tormed have shown that this simple uncoupled constant velocity model is precise

enough to follow cable movements in real sequences, such as those coming from
inspection runs captured by ROVs.

Observation Model

In order to determine the weight 77 for particle (i), the (hypothetical) cable pose for
such particle is first projected onto the current frame. Next, the response of a suitable
filter for all the image points lying along the projection is determined (the filter is
oriented orthogonally to the projection). The particle is finally scored with the aver-
age of filter responses. Two filters have been considered (see figure 2(a)): the deriva-
tive of Gaussian (DoG) filter, typically used for estimating image gradient informa-
tion, and the unidimensional mexican-hat function (MeX filter from now on):

2

X

e 2 .
DoG(x)=- e?@ | MeX(x)=|l-—|e ?® 3
(x) T (x) ( 02} 3)

Figure 2(b) plots the respective filter responses for a 1D synthetic signal. As can
be observed, the MeX filter emphasizes impulse-like signal changes with a larger
response than the DoG filter, which tends to over-smooth such changes. On the
other hand, the MeX filter produces a double response for step-like signal variations,
while the DoG filter does not but emphasizes the step. Therefore, it must be expect-
ed better results from the MeX filter when tracking a cable which appears narrow in
the images, while the DoG filter seems to be more appropriate for thick cables.

Finally, in order to speed up the calculation of particle weights, instead of using a fil-
ter oriented perpendicularly to each pose, horizontal and vertical mask filters are
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Figure 2: (a) Filters considered in the design of the observation model. (b) MeX and DoG
ilter responses for a 1D synthetic signal.

defined and respective convolution images are computed for the current image. Orient-
ed filter responses are then approximated for every particle (7) according to equation (4):

I, = (cos at )Ix + (sin a )Iy , (4)

where I, and I, are, respectively, the “horizontal” and “vertical” response images.

Y

Filter Initialization

In order for the tracker to follow the cable, the cable must first be detected so as to ini-
tialize the PF with a proper density. In this work, the PF is initialized in accordance
with the results of analyzing selected rows and columns of the current frame. For such
rows/columns, peaks in the Mex/DoG filter responses are located and the 1 or 2
largest magnitude peaks are kept depending on whether a narrow or a thick cable is
tracked. Next, an initial particle set is generated by considering the lines joining every
pair of selected peaks. If the image contains a cable, the best particle of the initial set
can be expected to be scored very high (i.e. above a certain threshold) and coincide
with the cable. In such a case, the cable is considered detected and the tracking starts;
otherwise, the cable detection is considered unreliable, the image is discarded and the
procedure is repeated with the next image. In such a case, the vehicle controller should
not receive any motion order. Figure 3 illustrates this process for a narrow cable.
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Figure 3: Illustration of the cable detection strategy: (a) original image; (b) crosses correspond to the maximum

response of selected image rows; (c) crosses correspond to the maximum response of selected image columns;
(d) particles generated (in yellow) and the best particle (in red); (e) best particle in yellow [The blue frame is a
region of interest.].

EXPERIMENTAL RESULT'S

An extensive set of experiments have been performed during the development of the
cable tracker which has been described in this paper. A summary of results highlight-
ing the most relevant facts about the tracker performance is presented in this section.
For a start, the tracker has been tested using a set of six video sequences of
telecommunication cables and six video sequences of power cables. They all account
for a total of around 150,000 images (approximately, one hour and a half of continu-
ous video) and they all come from several sessions with an ROV navigating over real
cables in a variety of situations: cables completely visible/partially hidden/totally
hidden, uniform/cluttered background, scenes sufficiently/poorly illuminated,
high/low contrast images, variations in the apparent thickness of the cable, etc. Fig-
ures 1(a) and 3(a) are examples of, respectively, the power (thick) and telecommuni-
cation (narrow) cables considered in these experiments. To obtain quantitative per-
formance data, several excerpts representative of the previous sequences and com-

B Nl;_mber of Average estimation error . N‘;-rmber of |Average estimation error
Trames Ad (pixels) Ad (°) | Aw (pixels) AB ©) ames Ad (pixels) Ao (°)
1 248 7.34 3.84 4.46 0.88 1 1400 6.44 3.41
2 499 2.63 1.67 8.88 1.15 2 500 1.79 0.88
3 409 2.75 1.38 5.12 0.82 3 4300 3.15 1.27
4 172 12.42 4.11 9.51 1.26 4 2600 4.34 0.96
5 171 3.38 1.11 2.23 0.90 5 900 3.42 1.26
6 129 5.02 2.92 4.46 1.72 6 600 9.37 1.92
global | 1628 468 | 222 | 628 | 1.05| | 8lobal | 109300 421 1.50
average average
Table 2: Off-line processing results Table 3: Off-line processing results
for thick cables. for narrow cables.
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prising more than 10,000
frames have been labelled with
ground truth information. Per-
formance has been measured
by means of the average cable
distance and angle errors with
regard to the ground truth.

Apart from the off-line
experiments, this section also
provides results for a number
of trials executed over a real
vehicle navigating in a water
tank.

In all the experiments, the
filter handled sets of 500 parti-
B cles and the Gaussian noise
Figure 4: From top to bottom and left to right, tracking results for ~ Var iances were determined
frames 1-225 of one of the power cable video sequences: (15t/3rd experimentany_ The filters used

columns) original frames; (2nd/4th columns) processing results: within the observation model
yellow — cable estimate. (Every 25th frame is shown.) .
made use of 21 pixel 1D

masks. Finally, the state esti-
mators used in the off-line and the on-line experiments were, respectively, the
weighted average of the 5% best particles and the best particle.

Results of Off-line Experiments

Results for thick cables can be found in table 2, while table 3 provides results for nar-
row cables. As can be observed, on average, the error is of the order of 3-5 pixels for
the cable distance and 1-2 degrees for the cable angle, what proves the usefulness of
the approach. Additionally, a set of video sequences accounting for almost 150,000
frames and around 90 minutes of continuous video have been successfully processed.
A sample of the results obtained for thick and narrow cables can be seen in, respec-
tively, figures 4 and 5.

Results of On-line Experiments

Apart from the off-line experiments described in the previous section, the cable
tracker has been tested along a number of trials with the ROV of figure 6.1t is a small
programmable ROV fitted with a compass, a depth sensor and a colour camera. The
reduced size of this vehicle allowed us to perform the experimentina 7.35m X 3.75m
x 1.32m water tank. To carry out this experiment, the visual tracker was integrated
with a subset of the control architecture described in (Antich and Ortiz, 2005).
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Figure 5: From left to right and top to bottom, tracking results for frames
20,800-21,450 of one of the telecommunication cable video sequences:
(odd rows) original frames; (even rows) processing results: yellow-cable
estimate (Every 50th frame is shown).

Figure 6: Nautilus microROV
(from Albatros Marine Tech-

nologies).

Briefly speaking, those
components of the
architecture related with
sensors not available in
the experimental plat-
form were deactivated.
Due to lack of space,
figure 7 plots results for
only two of the different
trials that were per-
formed. Each trial con-
sisted in, without any
human  intervention,
tracking the cable along
four runs of the water
tank, so that the vehicle
had to turn autonomous-
ly at the end of every run.
At the beginning of

every run, the tracker

had, thus, to look for the cable during the so-called sweeping stage, along which the
vehicle performed a zigzag movement to sweep the tank in search for the cable. In
order for the sweeping stage to last longer, the tracker was programmed so as to ignore
the cable during the 2-3 first sweeping lines of the stage. Positioning information was
available thanks to a visual positioning pattern at the bottom of the water tank. Table 4
provides quantitative performance results in the form of horizontal separation between
the vehicle and the cable, to observe the capability of the tracker for making the vehicle
“fly” over the cable. As can be observed, the vehicle did not detach from the cable more

than 12 cm on average, and never more than about 40 cm.
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Figure 7: Paths followed by the vehicle during two trials (respectively, upper and lower rows) of a multiple-run
experiment: the blue circle represents the position of departure while the magenta square indicates the end of
the path; the sweeping and tracking stages are indicated in, respectively, green and red; from left to right, first,
second, third and fourth runs of the trial; the thick black line is the cable at their real location.

1st run 2nd ryp 3rd run 4th ryp all runs
no. frames 127 149 159 139 574
AAD (cm) 10.16 15.92 10.69 12.56 12.38
MAD (cm) 35.94 32.94 34.77 41.31 41.31

1st run 2nd ryp 3rd ryn 4th ryp all runs
no. frames 133 146 137 157 573
AAD (cm) 9.27 12.39 9.74 14.70 11.66
MAD (cm) 19.26 30.26 24.27 38.60 38.60

Table 4: Tracking results for two trials (respectively, upper and lower tables): difference between vehicle and cable
horizontal positions (tracking stage), AAD=Average Absolute Difference, MAD=Maximum Absolute Difference.
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CONCLUSIONS

Extensive experimental results over a test set of more than 10,000 frames, for
which ground truth data have been manually generated, have shown the usefulness
of the cable tracking solution proposed.

Quantitative performance data in this regard has been gathered, yielding a glob-
al error for the cable tracker of, on average, between 4 and 5 pixels for the cable dis-
tance and between 1 and 2 degrees for the cable angle, what proves the usefulness of
the approach. A set of video sequences accounting for almost 150,000 frames and
around 90 minutes of continuous video have also been successfully processed.
Besides, the cable tracker has been tested over a real vehicle in a water tank, yielding
similar performance.
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SEGUIMIENTO VISUAL BAYESIANDO PARA LA
INSPECCION DE CABLES DE POTENCIA Y DE
TELECOMUNICACIONES SUMERGIDOS

RESUMEN

La operabilidad de una instalacién submarina consistente en cables de transpor-
te de energia eléctrica o de telecomunicaciones puede sélo ser garantizada a través de
un programa de inspeccién capaz de proporcionar a tiempo informacién sobre con-
diciones de peligro potenciales o danos causados por la movilidad del suelo ocednico,
la corrosién o actividades humanas tales como el trafico marino y la pesca.

Hoy en dia, estas tareas de vigilancia e inspeccién son realizadas por operadores
que desde la superficie de un barco controlan un vehiculo operado remotamente (ROV')
sobre el que se han montado cdmaras de video. Evidentemente, ésta es una tarea
tediosa en la que el operador debe permanecer largos periodos de tiempo concentra-
do frente a una consola, favoreciendo todo ello la aparicién de errores cuyo origen es,
principalmente, la pérdida de atencién y la fatiga. Ademds, las peculiares caracteristi-
cas de las imdgenes obtenidas del fondo marino —zonas difuminadas, bajo contras-
te, iluminacién no uniforme, etc— dificultan ain mas la ya compleja operacién. Por
tanto, la automatizacién de cualquier parte de este proceso puede constituir una
importante mejora en el mantenimiento de este tipo de instalaciones, no sélo en
cuanto a la reduccién del tiempo de inspeccién y de los errores, sino también de los
costes asociados.

Con este objetivo, se propone un sistema visual de seguimiento de estructuras
elongadas sumergidas capaz de proporcionar las consignas adecuadas para realizar el
guiado de un wvehiculo autinomo submarino, de forma que a lo largo del guiado se
pueda registrar en video la estructura inspeccionada. La solucidén propuesta en este
articulo se basa en los denominados fi/tros de particulas debido a su facilidad natural
para modelizar funciones de densidad de probabilidad multi-dimensionales y multi-
modales, lo cual permite gestionar de forma mds apropiada las ambigiiedades que
tipicamente resultan de entornos no estructurados como el lecho marino. Esta pro-
piedad de los filtros de particulas les permite abarcar un rango mayor de aplicaciones
que otras soluciones como los Filtros de Kalman y sus variantes, aunque, como es
bien conocido, a costa de un mayor coste computacional.

Los filtros de particulas aproximan funciones de densidad de probabilidad
mediante conjuntos de particulas S = {(s(V), V) | i = 1,...,N}. Cada particula represen-
ta una particular (e hipotética) configuracién s de variables (esto es, un estado) en el
espacio de estados, al cual se le asocia un peso o importancia 7 ; el modelo de estado,
junto con el espacio de estados, se escoge para cada aplicacién. La evolucién del con-
junto de particulas viene definido por dos modelos: el modelo de movimiento, que
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define cémo se desplazan las particulas dentro del espacio de estados de un instante
al siguiente, y un modelo de observacion, el cual pondera las particulas de acuerdo con
la observacién actual (p.e. la imagen actual). La combinacién adecuada de estos tres
modelos a través del paradigma del filtro de particulas permite estimar secuencial-
mente la verosimilitud del estado del cable: para cada imagen de la secuencia, la fun-
cién de densidad de probabilidad previamente estimada es utilizada para predecir
—a través de la aplicacién del modelo de movimiento— el estado del cable en la
siguiente imagen; a continuacién, la funcién de densidad de probabilidad es actuali-
zada mediante la observacién actual y el modelo de observacién; el estado mds pro-
bable del cable es finalmente determinado a partir de la densidad de probabilidad
resultante.

En el articulo se describen los diferentes modelos utilizados en la solucién
actual, donde: el cable es modelizado por una o dos lineas rectas, dependiendo de su
grosor aparente en las imdgenes, el modelo de movimiento asume velocidad aproxi-
madamente constante y el modelo de observacién se define en base a la respuesta de
un filtro de imagen especialmente adaptado para el tipo de cable a seguir.

CONCLUSIONES

La extensa coleccién de resultados experimentales presentados en este articulo,
correspondientes a un conjunto de test de mas de 10.000 imdgenes etiquetadas
manualmente con la deteccién correcta del cable que en ellas aparece, muestran la
utilidad de la estrategia de seguimiento de cables sumergidos que se ha propuesto.
En particular, a nivel cuantitativo, los experimentos realizados en cuanto a procesa-
miento de imédgenes derivan en un error de, en promedio, entre 4 y 5 pixeles para la
posicién del cable, y 1-2 grados para la orientacién del cable. Adicionalmente, un
conjunto de secuencias de video que comprenden casi 150.000 imagenes y alrededor
de 90 minutos de video continuo ha sido igualmente procesado con éxito. Finalmen-
te, el seguidor de cables ha sido verificado en un tanque de agua con un vehiculo sub-
marino no tripulado, obteniendo un rendimiento igualmente satisfactorio.
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