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In this paper, a new procedure for depth control of Autonomous Underwater Vehicles is proposed for
the vertical tracking. This procedure is based on the combination of sliding mode control and funnel
control. A variable funnel is used to transform tracking error fall within the funnel boundary. Numerical
simulations show the effectiveness of proposed control framework, it is demonstrated that proposed
controller has accurate good tracking performance, which can help inform decisions regarding control
techniques for regulating the vertical position of underwater vehicles.
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1. Introduction.

Control for Autonomous Underwater Vehicles (AUVs) is a
problem of interest today due to its multiple applications in un-
derwater tasks, such as deep-sea inspections, pipeline inspec-
tion, oceanographic mapping, and some military applications,
including detecting, locating, and neutralizing undersea mines.
Designing a robust controller for Autonomous Underwater Ve-
hicles navigation is a challenging task; model dynamics of the
AUV contain high-order nonlinearities due to coupling effects
and there exist uncertainties due to the limited knowledge of the
hydrodynamics and buoyancy forces affecting the system.

Many research works have been conducted to solve and
control AUVs and marine vehicles with different techniques to
overcome the aforementioned challenges; an Integral Sliding
Mode (ISM) controller is presented in [1] to enhance time de-
lay controller in order to improve control precision. PID tech-
niques are used to develop the design of separate controllers [2],
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a decoupled PD controller is considered to solve the orienta-
tion problem and position for AUVs [3], sliding mode tracking
control is presented in [4, 5, 6, 7], numerical simulation re-
sults demonstrate that the proposed controller achieves precise
tracking for underactuated AUVs. Second-order sliding mode
controller is proposed in [8] to stabilize an AUV, whereas adap-
tive tracking control is presented in [9, 10, 11, 12, 13], learning
control for Underwater Robotic Vehicles (URVs) is studied in
[14], Neural network control [15, 16, 17, 18], fuzzy control
[19, 20], Lyapunov-based techniques [21, 22] and Lyapunov’s
direct method [23]. In [5], a trajectory tracking sliding mode
controller is designed for autonomous surface vessels with the
use of nonlinear hydrodynamic damping model. Nonlinear un-
deractuated tracking control techniques are used in [21, 22] to
develop trajectory tracking controllers for underactuated ships.
Lyapunov’s direct method is used in [23] to solve the trajectory
tracking control problem of underactuated ships.

Recently, a new algorithm is considered for improving and
shaping the transient response for a class of nonlinear systems.
The idea behind this algorithm is to design an appropriate fun-
nel [24]. Funnel-based control strategy, is a high gain-based
time-varying control strategy which guarantees ‘tracking with
prescribed transient accuracy’. It has been proven that funnel
control is an appropriate tool for many practical systems like
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chemical reactor models [25], speed control of wind turbines
[26], voltage and current control of electrical circuits [27], and
control of Peak Inspiratory Pressure (PIP) [28], the time de-
lay estimation (TDE) and the back-stepping approach are used
by Gun Rae Cho et al. [30] for the tracking of torpedo-shape
Autonomous Underwater Vehicles (AUVs), the same combined
method is proposed for the control of an Autonomous Under-
water Vehicle (AUV) [31]. A combined funnel-based control
and a sliding mode control method is used by [32] for the con-
trol of an AUV in the vertical plan. Fatima Zohra Kadri et al.
[33] used.

A Model Reference Adaptive Control (MRAC) approach
based on multilayer per-ceptron (MLP) neural networks to con-
trol the depth of a REMUS Autonomous Underwater Vehicle.

The purpose of this paper is to develop a new proposal for
a combination between funnel-based control and sliding mode
control of an AUV in the diving plane, where the output vari-
ables are the forward velocity and the vehicle’s depth. It is
considered that the depth subsystem, which has relative nature
degree too. Based on these dynamics, a funnel-based sliding
mode control is designed. The funnel-based control has been
designed as a time-varying coefficient of the sliding surface.
This idea leads to an additional control term, and it also im-
proves the performance of the proposed controller. Moreover,
a control design for the vehicle forward velocity is also consid-
ered, while in most previous works, they have considered such
variable as constant.

The remainder of this contribution in this paper is catego-
rized as follows. We begin by configuration and modelling of
the submarine motion equations. In Section 2, a model of the
AUV in the horizontal plane is presented. The control design
is then proposed in Section 3. In Section 4, the performance of
the proposed control scheme is validated using computer sim-
ulations. Finally, the conclusions of this work are summarized
in Section 5.

2. AUV Modelling.

In [29], the submarine motion equations have been devel-
oped and introduced. The complete dynamics of motion for
AUV as a six-degrees of freedom (DOF) rigid body moving in
an ideal fluid are described by a set of 12 nonlinear, coupled,
first-order differential equations with constant coefficients. To
simplify the control law design procedure, we restrict our at-
tention to the dive plane with horizontal plane-control surfaces
at zero. Then, the heave and pitch equations of motion of the
vehicle in the body-fixed coordinate frame are given as follows:

m (u̇ + qw) = Xqqq2 + Xu̇u̇ + Xwqwq + Xqδuqδ

+ Xwww2 + Xwδδuw + Xδδu2δ2

− (W − B) sin θ + FP

(1)

m (ẇ + uq) = Zq̇q̇ + Zẇẇ + Zuquq + Zuwuw

+ Zuuu2δ + Zw|w|w|w| + Zq|q|q|q|

+ (W − B) cos θ + ZH

(2)

Iyyq̇ = Mq̇q̇ + Mẇẇ + Muquq + Muwuw + Muuu2δ

− (zGW − zBB) sin θ − (xGW − xBB) cos θ

+ Mw|w|w|w| + Mq|q|q|q| + MP

(3)

θ̇ = q (4)

ż = −usinθ + wcosθ (5)

Where u is the vehicle’s forward velocity, ω is the heave ve-
locity, θ is the pitch angle, q is the pitch angle velocity, z is the
vehicle’s depth, δ is the control fin angle, FP is the propulsion
force that control the forward velocity, m is the mass of the ve-
hicle, Iyy is the moment of inertia of the vehicle about the pitch
axis, W denotes the vehicle’s weight and B is the vehicle buoy-
ancy. Zq̇, Zuq, Zω̇, Mq̇, etc., are the hydrodynamics parameters.
Finally, MP and ZH represent the cross-flow drag terms and are
considered as disturbances.

Defining the state vector x= [x1, x2, x3, x4, x5]T = [u, ω, q
, θ, z]T , the control vector v= [FP, δ]T and the inertia matrix
is:

M =


m − Xu̇ 0 0 0 0 0

0 m − Xẇ −Zq̇ 0 0 0
0 −Mẇ Iyy − Mq̇ 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 (6)

The vehicle dynamics (1) are represented in the state space
formats

Or

Mẋ = fx (x, t) + gx (x, v) (7)

ẋ = f (x, t) + g (x, v) (8)

With outputs:
y1 = u

y2 = z

Where: fx (x, t) = M−1 fx (x, t) and gx(x, v) = M−1 gx (x, v)

2.1. Control Design.

In this section, some necessary definitions and theorems are
given.

Definition 1: The performance funnel Fφ (see Figure 1) is
determined by a bounded function ψ (t) where ψ (t)= 1

φ(t) and:

Fφ B {(t, e) ϵR ∥e (t) || < ψ (t)}
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Figure 1: The funnel Fφ and the tracking error e (t) inside it.

Source: Authors.

The idea behind the funnel-based control is to shape the
transient response of the tracking error to place it in the funnel.
Figure 1 shows the structure of the funnel Fφ and the path of
the output tracking error (e (t)) within it. In this approach, the
shape of the funnel (i.e., Fφ) is effective on the characteristics
of transient response like overshoot, rise time, settling time, and
so forth.

L and φ (t) is the function of the following class:

ΦB
{
φ (t) ϵw1.∞ (R+,R+) |∀t > 0 :φ (t)> 0

}
And limτ→x in fφ (τ)> 0,∀τ> 0 :φ−1(.) is globally Lipschitz.
where w1,∞ (R+, R+) represents a class of functions with bounded

derivatives. The boundaries of the funnel (which is ψ (t) in Fig-
ure 1) are affected by the appropriate choice of the function φ (t)
and the aim is that the error stays inside the funnel Fφ: Suppose

λ1=supt∈|0,x)ψ (t) , ϕ∗Bin f t∈|0,x)ψ (t)

Then φ (t)≥ 1
λ1

; ∀t≥T where T is sufficiently large, then e (t) is
ultimately bounded by λ1. In [24], a funnel-based controller
with the structure u (t)= − k (t) e (t) was employed to solve the
problem of output tracking for a dynamical system with relative
degree one where k (t) is a time-varying gain that is dependent
on the funnel shape and is selected as:

k (t)=
φ (t)

1−φ (t) |e (t)|
=

1
ψ (t)− |e (t)|

(9)

By using this controller, when the error approaches the bound-
ary of the funnel, the gain increases and prevents the error from
contacting the funnel boundary, and in comparison with the
adaptive approach, it is not dynamically generated.

2.2. Velocity Control.

As outlined above, most of the previous research considered
the forward speed to be constant. Though, to attain that, control
FP should be correctly designed. Consider the output variable
x1 = y1 = u and the constant reference ud. Since x1 has relative
degree one, a sliding manifold is designed as

σ1=x1−ud (10)

Using time derivative, equation (10) become:

σ̇1= fu (x, t, δ)+guFp (11)

The control law is proposed as a combination of funnel
based-control and sliding mode algorithms as

FP=veq+v1+v2 (12)

Where:

veq=
−k0z1−εk1 fu (x, t, δ)+εk1u̇d

εk1gu
(13)

v1= −βsign (σ) (14)

v2= −
1

k1gu
k (t)σ (t) (15)

With k0, k1 and β are positive constants. ε is a small positive
constant.

Also, k (t) is the time-varying funnel gain which is depen-
dent on the funnel shape and the sliding surface as below:

k (t)=
1

ψ (t)− |σ (t)|

Resulting in the following closed-loop system:

σ̇=
−k0z1+εk1u̇d

εk1
−

1
k1

k (t)σ (t)−guβsign (σ) (16)

2.2.1. Stability proof:
The proposed control law (Fp) (Equation 12) is designed

based on the sliding surface is introduced in
Choose the following Lyapunov function as:

V1=
1
2
σ2

1 (17)

Differentiating with the respect to time:

V̇1=σ1σ̇1

V̇1=σ1

[
−k0+εk1u̇d

εk1
−

1
K1

k (t)σ1 (t)−guβsign (σ1)
]

(18)

V̇1= −
k0

εk1
σ2

1+σ1u̇d−
1

K1
σ2

1k (t)−guβσ1sign (σ1) (19)

V̇1≤−

[
k0

εk1
+

1
K1

k (t)
]
σ2

1−guβ |σ1| ≤0 (20)

V̇1≤−D1 (t)σ2
1−guβ |σ1| ≤0 (21)

Inequality (21) implies that σ is bounded.
Furthermore, the bounded of ud and u̇dimplies the bound-

edness of σ.
Therefore, the stability of the velocity (1) with control (12)

with control has been proved.
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2.3. Depth Control.

The goal of this section is to achieve a constant reference
zd for the variable z, considering the second output variable
x2=y2=z, and taking its time derivative x3=ẋ2 as a new variable,
equations of depth subsystems become:

ẋ2= −usinθ +wcosθ =x3

ẋ3= −uqcosθ −wqsinθ +cosθ ( fw (x, t)−gw (x) δ) (22)

Where the term −u̇sinθ is omitted because equivalent con-
trol veq.

Defining the new variables x4=q−10w and x5=θ, the com-
plete diffeomorphism results in

x=Φ (x)=


u
z

−usinθ +wcosθ
q−10w
θ

 (23)

and the inverse transformation is of the form

x=Φ−1 (x)=


x1

x3+x1sinx5
cosx5

x4+10
(

x3+x1sinx5
cosx5

)
x5
x2


(24)

The complete subsystem for the depth control becomes

ẋ1=x3 (25)

ẋ3= f 3 (x, t)−g3 (x) δ (26)

ẋ4= f 4 (x1, x4, x5, t)+g4 (x) x3 (27)

ẋ5= f 5 (x1, x4, x5)+g5 (x) x3 (28)

Where

f⃗3(x, t) = −uq cos θ − ωq sin θ + cos θ fω(x, t)dt

˙⃗g3(x) = cos θ gω(x)
(29)

the second sliding manifold σ2 is formulated as

σ2=c0

∫
(x2−zd) dt+c1 (x2−zd) (30)

and its time derivative calculated, becomes:

σ̇2=c0 (x2−zd)+c1 (x3−żd) (31)

the control law for δ is proposed of the form

δ=δeq+δ1+δ2 (32)

where,

δeq =
1

ε2α2ḡ3(x)
(
−α0(x̄2 − zd) − α1(x̄3 − żd)

−ε2α2 f̄3(x, t) + ε2α2z̈d
) (33)

δ1= −γsign (σ2) (34)

δ2= −k (t)σ2 (t) (35)

With

k (t)=
1

ψ (t)− |σ2 (t)|
(36)

and c0, c1, α0, α1, α2 , γ and ϵ are design constants param-
eters,

So, the proposed control (32) achieves the stability of the
system in the depth reference with ultimately bounded conver-
gence.

2.3.1. Stability convergence proof:
In this section, the boundedness of all signals and the sta-

bility of the subsystem (25-26) in both the reaching phase and
the sliding phase will be provided.

Choose the following Lyapunov function as:

V=
1
2
σ2

2 (37)

Differentiating (37) with respect to time t we have:

V̇=σ2σ̇2 (38)

V̇=σ2
[
c0 (x3−żd)+c1 {( f3 (x, t)−g3 (x)σ)−z̈d}

]
(39)

V̇ = σ2

[
c0(x3 − żd) + c1 f̄3(x̄, t) − c1

(
α0

ε2α2
(x̄2 − zd)

)
−c1

(
α1

ε2α2
(x3 − żd)

)
+ f̄3(x̄, t) − z̈d

−c1νσ(σ2) − c1k̄(t)σ2

]
(40)

V̇ = σ2

[
c0 (x3 − żd) + c1 f3(x̄, t) − c1

α0

ε2α2
(x̄2 − zd)

−
α1

ε2α2
(x̄3 − żd) − c1 f̄3(x̄, t) + c1z̈d

−c1νσ(σ2) − c1k̄(t)σ2

] (41)

V̇ = σ2

[
−c1

α0

ε2α2
(x̄2 − zd)

−

(
−c0 +

α1

ε2α2

)
(x̄3 − żd) + c1z̈d

−c1νσ(σ2) − c1k̄(t)σ2

] (42)
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V̇ = σ2

[
−

(
c1

α0

ε2α2
(x2 − zd) +

(
α1

ε2α2
− c0

)
(x̄3 − żd)

)
+c1z̈d

−c1νσ(σ2) − c1k̄(t)σ2

]
(43)

c1
α0

ε2α2
(x2−zd)+

(
α1

ε2α2
−c0

)
(x3−żd)≤σ2 (44)

Then:

V̇≤σ2

[
−σ2−c1z̈d−c1νσ (σ2)−c1k (t)σ2

]
(45)

V̇≤−σ2
2−c1ν |σ2| −c1k (t)σ2

2≤0 (46)

V̇≤−
(
1+c1k (t)

)
σ2

2−c1ν |σ2| (47)

V̇≤−D2 (t)σ2
2−c1ν |σ2| ≤0 (48)

From the Lyapunov stability theory, the boundedness of σ2
can be ensured under the boundedness of the states system and
the control input.

Theorem1:
Consider system (1-5) and we take controller (12) and (32),

chosen control parameters appropriately, then the following re-
sults can be obtained:

• The reaching condition of sliding mode control is satis-
fied, that σ1 (t)=σ2 (t)= 0 at t→+

• The closed loops system is uniformly asymptotically sta-
ble.

• By section the different parameter values σ1 (t) and σ2 (t)
remains inside the funnel.

Proof:

let σ= [σ1, σ2].

Define
φ1 (∥σ∥)=

1
4

(
σ2

1+σ
2
2

)
(49)

φ2 (∥σ2∥)=σ2
1+σ

2
2 (50)

W (σ)=T
(
σ2

1+σ
2
2

)
(51)

T= (D1+D2) (52)

We choose the following Lyapunov function:

V=V1+V2=
1
2

(
σ2

1+σ
2
2

)
(53)

V̇=σ̇1σ1+σ̇2σ2 (54)

V̇≤−D1 (t)σ2
1−guβ |σ1| −D2 (t)σ2

2−c1ν |σ2| (55)

V̇≤−D1 (t)σ2
1−D2 (t)σ2

2−guβ |σ1| −c1ν |σ2| (56)

V̇≤−D1 (t)σ2
1−D2 (t)σ2

2 (57)

From the Lyapunov function (53) and its derivative (57) sat-
isfy:

φ1 (σ)<V (σ)<φ2 (∥σ∥) (58)

V̇< −W (σ)≤0 (59)

Since φ1and φ2 are two strictly increasing function, and
W (σ) is a positive, from the Lasalle-Yoshizawa. Theorem, the
boundedness of σ1 and σ1. Can be guaranteed.

Moreover, because limt→+∞ (W (σ))= 0 and limt→0 σ= 0
The error dynamics system consisting (u̇ ˙−ud) (ż−żd) is uni-

formly asymptotically stable.
From (54) and (57)

σ̇ ≤ Aσ, where A =
[
−D1(t) 0

0 −D2(t)

]
(60)

Solving the differential equation of (60) with initial σ (t0)
we can obtain:

σ≤exp (A (t−t0))σ (t0) (61)

Since the engine values of matrix, A are all negative, the
exponential convergence of σ to zero guaranteed. Therefore,
from (61) it can be found that σ (t) remains inside the funnel by
the choice of the control parameters values in D1 (t) and D2 (t).

Furthermore, due to (equation σ1) and (equation σ2), when
the error states are trapped in the sliding surface of σ= 0, then
asymptotical stability errors can be guaranteed.

3. Simulation Results.

In this section, computer simulations are presented to con-
firm the efficiency and proper performance of the proposed con-
trol law. the AUV model parameter as presented in Table 1. In
these simulations, initial state is taken to be zero. The related
parameters in the simulation task are also presented in Table 1.
The forward velocity u reference is set to 2 m

s and the depth z
reference to 20 m.



B. Lilia et al. / Journal of Maritime Research Vol XXII. No. II (2025) 178–186 183

Table 1: AUV model parameters and controller parameters de-
sign.

Source: Authors.

First, the results for ideal model (no disturbances and no
uncertainties) are presented. Figure 2 shows the first output,
namely, the forward velocity u performance and how it achieves
the reference in a short time. Figure 3 shows the response of
the vehicle depth, which achieves the reference with very little
overshoot.

Figure 2: The actual and desired Forward velocity of the AUV.

Source: Authors.

Figure 3: Time response of Forward velocity error.

Source: Authors.

Figure 4: The actual and desired depths of the AUV.

Source: Authors.

Figure 5: Time response of depth error.

Source: Authors.
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In Fig. 6, the performance of the remaining state variables
is displayed, where it can be seen that these variables achieve
steady state, there is no instability.

Figure 7 shows the response of the resultant control laws
applied to the system.

Figure 6: States ω, θ and q responses.

Source: Authors.

Figure 7: Control inputs.

Source: Authors.

To display the effectiveness of our proposed controller sche-
me in presence of model’s uncertainties and disturbances, in
numerical simulations, we add noise on each hydro-dynamic
coefficient to simulate model’s uncertainties. Moreover, we use
a sea current to simulate environmental disturbances.

Figure 8: The actual and desired depths of the AUV in presence
of the disturbances and parameters uncertainties.

Source: Authors.

Figure 9: States ω, θ and q responses in presence of distur-
bances and parameters uncertainties.

Source: Authors.

Figure 8 shows how the depth z achieves the reference with
a satisfactory performance despite the disturbances and param-
eters uncertainties. Again, there mining state variables responses
are shown in Figure 9, is successfully treated. Applied control
laws responses are shown in Figure 10, where it can be seen
that their amplitude remains close to the ones obtained in the
absence of disturbances.

Conclusions.

In this paper, the funnel-based sliding mode controller is
successfully used to control an Autonomous Underwater Vehi-
cle in the vertical plane. In this approach, an additional term
(based on the funnel) is added to the sliding mode controller
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Figure 10: Control inputs in presence of disturbances and pa-
rameters uncertainties.

Source: Authors.

which leads to the improvement of the properties of the closed-
loop system in different aspects. We used computer simula-
tions which are performed by MATLAB Software. The simula-
tion results show the effectiveness of the proposed controller in
the presence of external disturbances and plant parameter vari-
ations.
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