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ABSTRACT

This paper describes in detail the design methodology of a robust QFT (Quan-
titative Feedback Theory) controller for the control of the course changing of a
ship. A linear model is used with uncertainty in the parameters. The system is
designed to fulfil the specifications of robust stability and robust tracking of a
reference system.

Keywords: Ship control, ship autopilots, marine systems, control systems,
ship model, course-changing control, plant templates, bounds, QFT control.

INTRODUCTION

If a control system were represented by a fixed, known mathematical model
and, if this model were available even in the presence of disturbances, the design of the
controller required to attain the desired behaviur specifications would be a relatively
simple matter. However, the mathematical model of the system can present variations
due, amongst other things, to modeling errors or to the effects of external distur-
bances. In order to reduce the sensitivity of the system to these uncertainties, a closed
loop control system is required. The designed controller must also be robust in order
to attain the required specifications, even when faced with uncertainty in the model
and the presence of disturbances. The quantity of feedback required will be directly
proportionate to the degree of uncertainty and to the desired reduction in sensitivity.
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In the 1960s, Isaac Horowitz (1963) introduced an efficient robust control
design technique in the frequency domain, known as the “Quantitative Feedback
Theory” or QFT. This technique considers a priori the uncertainty that may be 
present in the process and its environment and establishes a balance between the
quantity of feedback required and the design complexity. The controller designed
with this method is of minimum cost, does not have a large gain and minimises the
control effort. Moreover, it has a smaller bandwidth than that obtained using any
other design technique dealing with special structures and their uncertainties, dis-
turbances and/or specifications.

The QFT method has already been applied in the design of different types of
control systems for, for example, flight control (Houpis et al., 1994), control of an
activated sludge wastewater treatment plant (Ostolaza and García Sanz, 1997),
robot control systems (Yaniv and Horowitz, 1990; Kelemen and Bagchi, 1993; Pied-
monte et al., 1998; Choi et al., 1999), stabilisation of the vertical movement of a ship
(Aranda et al., 2002; Velasco et al., 2004).

This paper presents the application of this method to the control of the
course changing manoeuvring for a ship (Rueda and Velasco, 2000 and Rueda, T.M.
2005). Course control is of special interest for joint operations between ships such as
assistance to a damaged ship, towing manoeuvres and going along side or two ships
sailing close to each other. A Matlab QFT toolbox (Borguesani, 1995) is used for
the design and analysis of the control system.

METHODOLOGY. QFT DESIGN TECHNIQUE FOR LINEAR SYSTEMS

The QFT design technique is characterised mainly by its consideration a 
priori of the uncertainty of the process, caused by the variations in the parameters of
the equipment to be controlled and by external disturbances and takes into account
in the controller design process both the gain and its phase. It attempts to minimise
the control effort in order to avoid saturations in the actuators or in the plant, which
can be caused by the amplification of the sensor noise required to reach the desired
specifications with a minimum bandwidth. With this method, a robust controller is
obtained which is insensitive to the uncertainties of the process. The system model
may be given as a transfer function or using experimental data. The representation in
state variables is not normally used, since it is rather more complex. This technique
makes it possible to predict quite simply whether some desired behaviour specifica-
tion will not be fulfilled and to rectify the design accordingly without using complex
mathematical tools. With this design method, a controller can be selected in graph
form in the frequency domain.

The QFT method proposes as a general control strategy the two degrees of
freedom structure presented in Figure 1, in which both compensators (F(s) and
G(s)) are LTI, linear and time invariant.
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Figure 1: Two degrees of freedom control structure

Below, we will applied the QFT technique to the design of the control system
for the course changing manoeuvre for a Mariner class cargo ship (Rueda and Velas-
co, 2000).

DEVELOPMENT

Mathematical Model for Course Control of a Ship

In the literature (Fossen, 1994), linear and non-linear techniques are pro-
posed which describe the basic dynamics for the course control on the horizontal
plane. Figure 2 shows the block diagram of a ship’s steering system.

Figure 2: Ship’s steering system

The command applied is ψr, which represents the desired course, ψe is the error
in the course; the control signal which acts as the command on the rudder servomotor
is δc, and represents the rudder angle required to correct the course deviation. The
actual value of the ru dder angle is δ, and ψ is the ship’s course. The effects of satura-
tion are considered both in the rudder angle and in the speed of change of this angle.

Control Problem

The objectives to be performed by an automatic pilot are:
Course-keeping: Maintain the heading of a ship following a given course

(ψ(t) = constant).
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Course changing: This manoeuvre must be performed in the minimum time
possible, without overshoots at the beginning and end of the operation, to show
clearly to the other ships the intentions of the manoeuvre. This can be achieved by
using a second order reference model to determine the trajectory (Fossen, 1994):

(1)

where ζ ( 0,8 ≤ ζ ≤ 1) is the desired closed loop damping ratio, and ωn is the
natural frequency, whose value depends on the the ship’s dynamics.

In both situations, the system must work efficiently, independently of the dis-
turbances caused by the wind, waves and currents.

APPLICATION: COURSE CONTROL FOR A SHIP WITH A LINEAR 
MATHEMATICAL MODEL

Definition of Design Problem

Nomoto et al. (1957) propose, for the analysis of ship stability and the design
of automatic pilots, an approximate first order model:

(2)

where T is the value of an effective time constant (T=T1+T2-T3)
The parameters K, T1, T2 y T3 represent the ship’s dynamics. These are deter-

mined by the dimensions and forms of the ship, depending also on operating condi-
tions, such as speed, load, ballast, draft, trim and depth of water.

One ship represented by the above mathematical model is the Mariner class
cargo ship, (Fossen, 1994) with:

(3)

The ship model to carry out the design of a QFT controller, assuming that
the K and T parameters show uncertainty, is:
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The system should fulfil the following specifications:
1. Robust stability:Phase margin of at least 45º, gain margin of 2 dB
2. Robust tracking of reference signal, desired course: the course changing

manoeuvre must be defined within an acceptable range of variation with respect to a
reference signal. The lower bound will be a course change which is slower than the
reference. The upper bound will be a master course-change than the reference.
Figure 3 shows the specified bounds.

These bounds correspond to the trajectory defined by the response to the step
input of the following A(s) and B(s) functions:

Figure 3: Bounds in the time domain Figura 4: Bounds in the frequency domain

(5)

To apply the QFT design technique, the specifications need to be defined in
the frequency domain. Thus, for the case under study:

(6)

where T is the closed loop reference transfer function.
Figure 4 shows the representation in frequency domain of the established 

tolerances.
In order to fulfil both specifications, a QFT controller will be designed made

up of the compensator G(s) and the pre-filter F(s) of the two degrees of freedom
system of Fig. 5.
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Figure 5: QFT control of course changing 

Selection of Design Parameters

The second step in the design process is to select a nominal plant P0(s) from
among the family of plants PP(s). An adequate and finite set of frequencies Ω must
also be selected. This set is determined by the bandwidth of the system and by the
frequencies of interest, for which the different desired behaviour specifications are
defined. In this case, the nominal plant selected is:

(7)

Taking into account the frequency response bounds permitted, Figure 5, it
choose as a set of design frequencies:

(8)

Design

The third step in the design process is to represent as accurately as posible the
uncertainty of the system. When the system is not defined by a single model, but
rather has several due to the parametric uncertainty, the frequency response of the
system for a given frequency is represented by a set of points, as many as there are
different models. All of these points define a region of uncertainty known as tem-
plate. There will be as many templates as frequencies in the set Ω.

The most common way to calculate a template is to perform a sweep of the
values that the model parameters can take. In this study case, a sweep is made of the
values that can be taken by the parameters K and T. The extremes of the uncertainty
intervals are taken as references, and these values have been selected:

K = {-0.135, -0.16, -0.185, -0.235}
T = {80.3, 95.3, 107.3, 122.3, 134.3}

In order to perform the control system design, it suffices to consider the con-
tour of a template, since if this contour respects the regions forbidden by the specifi-
cations, the rest of the templates will do too (García-Sanz and Vital, 1999).
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The templates obtained for the family of plants PP(s) and for the set of frequencies Ω
are as shown in Figure 6.

Figure 6: Templates

Each point represents the frequency response of one plant of the family and
each colour distinguishes the response for each value of the frequency range. The
shape of the templates varies with the frequency and its size decreases when the fre-
quency increases.

Obtaining the Bounds

The fourth step in the design is to define, in QFT terminology, the desired
behaviour restrictions. The specifications given, combined with the uncertainty of
the system, form what are termed bounds. They are represented on the
magnitudedB-phase plane, and there is one for each frequency and specification; they
are denoted as B(w).

These curves are the objects which define the bounds of the regions prohibited
for the adjustment of the controller. If the transfer function of the controller is
denoted as G(jw) and the transfer function of the nominal plant as P0(jw), the
bounds are those regions that the open loop function frequency response  L0(jw)
(L0(jw) = G(jw)P0(jw)) must avoid in order to guarantee the fulfilment of the design
specifications for the whole set of plants PP(jw). In order to use the QFT method, the
bounds need to be defined in the frequency range.

The procedure for obtaining in graph form the bound for each frequency and
each specification is immediately available through the Matlab QFT toolbox.
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Robust Stability

Relative stability is normally expressed in terms of certain desired gain mar-
gins and phases. These are related with a value in decibels δ, known as the M-circle
because it takes this shape if represented in a magnitudedB-phase diagram. This cir-
cle identifies an exclusion zone around the point [-180º, 0dB], which the loop func-
tion must not cross ( ) in order to ensure the margin of minimum
stability. The specification of robust stability is written as:

(9)

relating it with the gain margin (GM) and phase (PM) as follows:

(10)

For the example proposed, a phase margin of at least 45º and a gain margin of
2 dB were specified.

Thus, the following should be fulfilled:

(11)

Taking into account the specifications imposed and the uncertainty of the
model, the bounds for robust stability are as shown in Figure 7.

The bounds for the frequency
range Ω are represented by the
following colour code: ω =
0.003 rad/s in red, 0.007 rad/s
in green, 0.01 rad/s in blue,
0.02 rad/s in yellow, 0.05 rad/s
in light blue and 0.1 rad/s in
magenta. This will apply to all
of the bounds graphs.

Figure 7:
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When the bounds are represented by a continuous line and are closed, the
specification is verified if the frequency response of the loop function for each fre-
quency is outside the curve corresponding to the same frequency.

Robust tracking of a reference signal

The tracking specification is established by means of lower, a(t), and upper,
b(t), bounds in the system response. It is considered that both functions have
Laplace transform A(s) and B(s). For the example used, it was specified that the
response to a course changing should be kept within the bounds given in Figure 5.
In order to apply the QFT technique, this specification is defined in the frequency
domain as follows

(12)

where T(jw) is the closed loop transfer function of the system.
For the QFT design, the specification is established as follows:

(13)

where:

(14)

In the example, in order to
obtain robust tracking bounds, a
subset of  Ω is considered, and it
is required that the specification
is verified only for frequencies
lower than 0.05 rad/s. Combin-
ing the specification and the
uncertainty, the robust tracking
bounds of Figure 8 are obtained.
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bounds are open and have a
continuous line. Thus, the open
loop response, L(jw) , for each

 

-350 -300 -250 -200 -150 -100 -50 0
-15

-10

-5

0

5

10

15

20

25

7

7

7

7
7

Fase (º)

( )
( )

7

7

a

b

S

S

W a

W b

ω

ω

=

=

( ) ( )
( ) ( ) ( )7 71a bS S

P j G j
W W

P j G j H j
ω ω

ω ω ω
≤ ≤

+

( ) ( ) ( ) ( ) ( )20log  , ,a T j b P s sω ω ω ω≤ ≤ ∀ ∈Ω ∀ ∈ P

T. M. Rueda, F. J. Velasco, E. Moyano, E. López, J.M. de la Cruz

JOURNAL OF MARITIME RESEARCH 77

Figure 8: Robust tracking bounds

M
ag

ni
tu

de
 (d

B
)

Phase (º)

 

n 4..qxp  21/11/2005  19:34  PÆgina 77



frequency must be adjusted so that this point is located above the bound correspon-
ding to this same frequency. Thus, it is ensured that the specification is fulflled.

Tuning of the Controller

The fifth step in the design of the control system consists in finding a con-
troller with which all of the desired specifications are fulfilled. It is also known as the
synthesis or “loop-shaping” phase.

The method consists in assuming an initial value of the controller function
G0(jw), and adjusting the loop function L0(jw) which verifies the imposed restric-
tions and minimises the control effort. The adjustment is made using the Matlab
QFT Toolbox, shifting the loop curve vertically and horizontally on the magni-
tudedB-phase plane, until it is situated in such a way as to not violate the bounds and
as to have the lowest gain possible.

For the example of the Mariner class cargo ship, and assuming an initial con-
troller of a constant value, G0(s)=1.

The representation of the loop function is a curve with several points marked
in colours. These points correspond to the response of the loop for the various fre-
quencies defined in Ω, following the same colour code as in the bounds. The loop
adjustment must be done in such a way that each coloured point is close to the
bound of the same colour, and same frequency. It must also be taken into account
whether the bound is a continuous line or not. If they are all continuous, the point
must be above for open curves (ω = 0.003, 0.007, 0.01 rad/s) and outside for closed
curves (ω = 0.02, 0.05, 0.1 rad/s).

This part of the design process is not automated in the Matlab toolbox;
obtaining a good design with little overdesign depends greatly on the skill of the
designer. There is no single or perfect solution.

The controller is related with the loop function as follows:

(15)

In this way, once the loop is adjusted, it is simple to obtain the transfer func-
tion of the compensator. The controller obtained is robust, that is, it provides good
results for all of the family of plants defined by the uncertainty, not only for the
nominal plant used in the loop-shaping stage.

It is recommended, in this loop-shaping stage, to always begin by adjusting
the point corresponding to the lowest frequency, continuing upwards and modifying
the function progressively.

For the example of the course changing manoeuvre, the terms included are:
1.- Reduce the system gain to adjust the frequency w = 0.003 rad/s. The

loop function point for this same frequency, in red, must be above the bound at this

( ) ( ) ( )0 0L j G j P jω ω ω=
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frequency, also in red, and as near as possible, so that there is as little as possible
overdesign. For the compensator G1(s) , this condition is fulfilled, as can be seen in
Figure 9.

(16)
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Figure 10: Loop function L2 and bounds
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points, the lower the feedback cost. A certain improvement is observed in Figure 11;
this is achieved by adding two complex poles conjugated with the natural frequency
ωn = 0.1783 rad/s and damping ratio δ = 0.1099, obtaining the controller G3(s).

(18)

The compensator G(s) obtained finally is:

(19)

The design of the controller with which the robust tracking bounds are
respected in the loop function frequency response is performed in two stages. The
uncertainty of the system means that there is a maximum and a minimum response.
The first step in the design is to tune the compensator G(s), so as to reduce the 
difference between the two responses. The second step consists in adjusting a pre-
filter F(s), which transfers the variations obtained with the above design to the zone
defined by the tolerances b(w) and a(w). That is, the definition of equation 6 can be
written as:
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Figure 12 shows the frequency response of the system with the controller Q
but, without the prefilter F, it is not within the bounds

The adjustment of the prefilter is performed graphically by shifting the sys-
tem response curve using the mouse, so that it is within the required tolerances. In
this case, we get:

(21)

Design Validation

As the last step in the design process, a validation of the obtained results
should be made, graphically checking the specifications in the frequency and time
domains.

Moreover, this validation is essential, since the design has been made only for
a finite set of frequencies and hence it cannot be ensured, a priori, that it will be ful-
filled for any other frequency, inside or outside this range. Thus, it needs to be
checked for a higher number of frequencies.

For the proposed example, it is verified whether the specifications are fulfilled
for a new range of frequencies Ωv, for 100 values logarithmically spaced between 
10-4 and 0.1 rad/s.

Figure 13 shows with a dotted line the desired stability value (δ = 1.2 = 1.58
dB) and with a continuous line the system response. As this latter value is below the
specification line, the required robust stability condition is fulfilled.

Figure 14 shows that the conditions of robust tracking are fulfilled for the
course changing manoeuvre in the frequency domain; the system response, in a con-
tinuous line, is within the permitted tolerance, in the dotted line.
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Course changing manoeuvre in the time domain

The course changing manoeuvre must be within the permitted tolerantes a(t)
and b(t). Figure 15.a shows that this is fulfilled. Figure 15.b shows the rudder angle
required to carry out this manoeuvre.

CONCLUSIONS

A linear QFT robust control methodology has been applied to the course
changing manoeuvre for a ship. It has been demonstrated that this technique is suit-
able for application in this case, which presents uncertainties in the parameters.

It has been verified, by means of simulation, that the required specifications
of robust stability and robust tracking are fulfilled.

Another important factor is the small control effort required to perform this
course changing manoeuvre.
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