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ABSTRACT

In recent years we have been witnesses of an extraordinary development in sail-
ing technology. All aspects of the sport have benefited from the advancement of
computational tools. Computational fluid dynamics, finite element analysis of
structures, and optimization tools can increasingly be found in the bag of tricks
of designers. In this article we will present a methodology and a tool to treat the
design of sailboat foils. The methodology is grounded in the adequate use of cur-
rent technologies, scaling them when deemed necessary. The construction of a
model that includes the treatment of geometrical and structural constrains at the
same time using currently available tools will be described.

PRECISION MODELS

For years, the most used tools for foil design were based on panel codes.
Those have the advantage of relative short running times with the computing power
available today. Recent developments in CFD (computational fluid dynamics) tech-
nology have brought more precise predictive capacity. The downside is computa-
tional expense.

Today, it is possible to analyze a certain foil configuration or even several of
them with CFD tools (RANS codes). If we want the added precision of more
advance codes we would have to upgrade to LES (Large Edy Simulation) codes.
These are still expensive from the computational time perspective. In terms of using
them for an optimization that may involve tens or hundreds of evaluations is still
prohibitive for most projects.
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The alternative is to use older models. A middle ground can be found though.
Using a variety of technologies, namely neural networks and genetic algorithms it is
possible to generate a model that mixes different models for use in optimization.

NEURAL NETWORKS

In general, the area of neural networks is based on our understanding of the
workings of the human brain. NN (neural networks) work in a similar way to our
brain, by learning. This is, in fact, their most significant property.

Neural computing concepts are mainly based on attempts to mimic the way
our brain processes information in order to solve different kinds of problems. NN,
obviously, have not even get close to model the complexity of the human brain but
they have proven to be very efficient at problems that are easy for the human brain
but difficult for traditional computers, such as pattern recognition.

The way to visualize the working of an ANN (artificial neural network) is to
think of mathematical models of a biological neuron linked together on a network.
This forms an information processing structure that has the ability to learn to per-
form certain tasks.

There are different kinds of neuron, different kinds of networks and different
kinds of associated performance functions and learning algorithms.

Neuron models are mathematical models of the behaviour of a single neuron
in a biological nervous system. These models receive information in the form of a set
of numerical input signals. This information is then integrated with a set of free
parameters to produce a message in the form of a single numerical output signal.

The kind of NN comes conditioned by the way its neurons are arranged to
form a particular architecture. The architecture is defined by the number of neurons,
their arrangement and their connectivity.

The performance function is in charge of defining the task the neural net-
work is required to carry out and provides a measure of the quality of the representa-
tion that the network is required to learn. Each particular application requires a dif-
ferent performance function.

The missing piece in this puzzle is the learning algorithm. This is the proce-
dure used to carry out the learning process. The learning (or training) algorithm is
applied to the network in order to obtain a desired performance. There are different
types of learning that are defined by the way the adjustment of the free parameters in
the NN takes place.

In our case, we have used a neural network composed of perceptrons. This
neuron model has been combined in what is known as a multilayer perceptron. The
network is composed of an input layer for six inputs, sigmoid hidden layers, and an
output layer.
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GENETIC ALGORITHMS

According to [Heitkoetter, 1994]: “Evolutionary algorithm is an umbrella term
used to describe computer-based problem solving systems which use computational models of
evolutionary processes as key elements in their design and implementation”.

Genetic algorithms are based on an analogy with the laws of natural selection
proposed by Darwin and its most famous principle of survival of the fittest. Genetic
algorithms are multiple solution algorithms. They work on a population of solutions
called individuals. Each individual is represented by its genome. A genome defines
unequivocally a solution of the problem. The individuals strive for survival and for
continuity of their genome (reproduction). The time is divided into discrete steps
called generations. Depending on the type of genetic algorithm every individual
(simple genetic algorithm) or some individuals (steady-state genetic algorithm) are
born (created) each generation.

The analogy of the environment for a genetic algorithm is the evaluation
function. This function assigns a fitness value to each individual. The goal of the
algorithm is to find the individual best fitted to the environment, thus maximizing
the evaluation function.

GAs (Genetic Algorithms) differ from classical optimization strategies in
several respects:

— GAs operate simultaneously on a population of potential solutions not on
a single instance that gets iterated to find the optimum.

— GAs use directly the objective function and do not need to calculate deriv-
atives or other auxiliary knowledge.

— GAs are stochastic methods, not deterministic. They are frequently found
more robust in some cases. This is especially true in the case of non differ-
entiable, multi-modal or convex functions.

— GAs have a greater potential to explore the whole search space.

The way a genetic algorithm works is by evolving the population to find the
best individual (best solution to the problem). To accomplish that, three genetic
operators are applied to the population: selection, crossover and mutation. Each
individual can either survive,
reproduce or die according to
their fitness value which is related
to the value of the cost functional.

The selection operator
decides if an individual repro-
duces, survives or dies. There are
two basic types of selection,
roulette wheel and tournament.
The most popular tournament is
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the two-point tournament. In this case, two individuals are drafted at random from
the population and compared, the best one is stored and both are reintroduced in the
population. The procedure is repeated until a new population of adequate size is
reached.

Since selection does not create new individuals, crossover is need to increase
diversity among the population. It is applied with a probability close to one. The
operator selects at random a position in the chromosome and from that position it
switches the information in the chromosome.

Another key ingredient is the mutator operator. This operator is applied
because important genetic information may be lost as a result of crossovers. It is
applied with a small probability and introduces random values to the chromosome.

If we describe in pseudo code a genetic algorithm we would have something
similar to:

begin
initiate population P
evaluate population P
repeat

select parents in P
recombine parents
mutate
evaluate
select

until (termination condition)
end

In our case we have used a steady state genetic algorithm with two point
crossover. The genome described seven parameters that represented the y coordinate
of a fifth degree B-spline and a scaling factor.

GEOMETRICAL REPRESENTATION

In the way the section has been set up it is defined by the position of the con-
trol polygon of a fifth degree B-spline. These points are allowed to vary trough a
definite range around the starting section. In order to cover a wider design space an

scaling factor is also used that
multiplies the height of all the
control points.

This way of representing
the section allows for great varia-
tion of the shape while preserv-
ing a certain degree of smooth-
ness.
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COMPUTATIONAL TOOLS

For the calculations necessary to carry out the optimization we have used var-
ied tools. From the aerodynamic perspective we have used two distinct tools.

Firstly, we used the well know airfoil analysis code Xfoil. This is a panel code
with a strongly coupled boundary layer solution. The code has been widely used in
foil design for some time and is considered sufficiently accurate for the application
we were after.

We have also used a graphical user interface that has been created to make the
used of Xfoil more user friendly. This gui is called XFLR5. To this gui, a option to
control the optimization has been added.

On the other side, we
also used a CFD code,
Tdyn. In this case, the code
is a multi-physics finite ele-
ment code. This code can be
easily used from within a
pre-post processing soft-
ware, GiD. This software
can be called in batch mode
witch therefore facilitates
the integration in the flow
of the optimization.

The structural part is
considered from two differ-
ent fronts. First, we take into consideration geometric constraints for the generation
of individuals in the population. These constraints have a significant structural
meaning. In particular, they are the maximum thickness of a section (that has to be
within certain values) and the sectional inertia that can be set up either as a con-
straint or in a multi objective optimization.

The other structural consideration is based on the finite element analysis of
the structure of the whole keel. To accomplish that, we have used the parameteriza-
tion capabilities of modern modeling software. In particular, the coordinates of the
control points drive the creation of the geometry in Catia. This software allows the
creation of a complete parametric model that would change with each input of dif-
ferent coordinates. Associated to the geometric capabilities, Catia also has an inte-
grated finite element analysis module. Once the geometry is created, with its topolo-
gy defined, the finite element solver is automatically called upon to mesh the new
geometry and solve the case when the geometry gets updated.

Other tools that have been used include programming libraries for neural
networks and for genetic algorithms. These libraries, for example GAlib, are avail-
able as open source in C++.
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GLOBAL MODEL

The different tools have been scaled with respect to their performance and
quality to create a global model. The model scales each tool to use it with the part of
the population that seems more adequate for it. In that context, we distinguished 3
types of solutions: those coming from the neural network, those from the panel code,
and those from the CFD code.

The way this works is the following. The first step was to train the neural net-
work. This was carried out by generating a first population of randomly generated
individuals. These individuals were calculated using the panel code. This data set
serves as the base training set for the NN. At this point the NN is capable of predict-
ing aerodynamic properties from the genes of an individual.

For each subsequent generation, the neural network makes a prediction of the
fitness of the individuals. The best half of the population is then evaluated with the
panel code to improve the quality of the results. This method has the drawback of
possibly missing good individuals that are badly predicted by the NN. This is par-
tially avoided by the calculation of a large part of the population (half of it) with the
more reliable prediction method. In order to establish another failsafe, a small num-
ber of individuals draw at random are also evaluated even if they do not belong to
the top 50%.

These calculations are also used to improve the quality of the prediction by
adding them to the training set.

In order to refine the search even further, it was proposed to evaluate the top
10% with the CFD code. This has the drawback of multiplying the computational
effort required. Looking for ways to save computing time it was decided to evaluate
these sections only at regular interval and not in every generation. This way, scores
for the chosen genes are corrected once out of several generations (depending on
the general number of generations). These scores are also used to improve the train-
ing set.

In the same way, these individuals that are found best fitted are used as the
definition of the geometry within Catia. Simple put, another row with the coordi-
nates of the control points is added to the table that defines the different configura-
tions. That row is selected as the actual configuration for that particular part. With
this done, the part is updated and the new mechanical properties are measured. This
also calls for an update to the structural calculation. Since the topology of the part
has not changed, this can all be done automatically.

OPTIMIZATION PROBLEM

In a general way, the example problem would be to find the best profile for a
keel taking into account structural constraints. The keel subject to optimization is
destined for a GP 42. This is a racing sailboat rule of the type known as box rules.
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The GP 42 rule has been created with the target of
“...to promote the conception and construction of boats fun to sail, seaworthy and

with considerable longevity.”
It is in this environment that the proposed problem is framed. The idea is to

used the previously exposed methodology to optimize a baseline keel for its use in a
GP 42.

In a very brief way, the rule sets a few limits on properties of the keels. These
limits are the keel weight, and thickness measurement at three different points of the
span. Of course, there is also a limit in draft for the whole boat that affects the keel
span. The following table presents the measures that have to be considered:

Based on these
measurements, the keel
maximum thickness distri-
bution is set. A key aspect
to consider here is that the
weight represents the
weight of the whole keel
assembly. Therefore, the
parallel consideration of the structural aspect is of prime importance. A lighter keel
blade that can support the same or more weight will allow for a bigger bulb.

The baseline keel was designed using a previously develop section. With
respect to the plan form, it was fixed once the required blade area was determined
from the sail plan.

These geometric restric-
tions were parameterized on a
Catia model. For the connec-
tion to the aerodynamic part of
the optimization the control
points of the section are updat-
ed from the ones send by the
optimizer. This way, the same
genome defines the shape used
for the aerodynamic calculations and for the structural calculations.

Once the model is parameterized, linking different features is possible. For
example, important properties such as weight can be linked. Thus, the weight of the
bulb can be changed in a way that keeps the total weight of the keel constant.

Furthermore, in the structural part, meshing properties only have to be
defined once. Since the topology of the geometry does not change, only the geome-
try trough its control points does, the meshing can be accomplish automatically after
setup of the baseline model. The load conditions for the calculation are also parame-
terized. Since the bulb weight changes as a function of the section so does the load.
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Keel Measurements
Keel Maximum weight. 2300 kg.
Keel Thickness 100 mm. Below hull. 0.090 m.
Keel Thickness mid-span. 0.080 m.
Keel Thickness 100 mm. Above bulb. 0.070 m.

Control Points for Catia Model
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This set up allows considering some of the downstream effects that choosing a cer-
tain section has.

A very similar procedure is used to pass information to
the CFD. In this case, the geometry of the baseline
section is set up. This includes the meshing definition
(how fine or coarse) and the boundary conditions. The
pre-processing software GiD associates this definitions
to geometry and passes them to the mesh just before
the problem is run. By changing the geometry instead
of creating a new one, all conditions are kept in the
same entities. Once in place, GiD and Tdyn can be run
in batch mode. The optimizer changes the geometric
definition (in fact, just moves the control points) and
the problem is meshed and run.

The fact that the geometry is unequivocally
defined by the same genome allows the interplay of dif-
ferent pieces of software than can be run in batches.
With this structure in place the problem is set up to run.

OPTIMIZATION FUNCTION

What needs to be optimize to
improve the performance of a sail-
boat appendix is not always clear.

The variety of operating conditions that the boat is expected to find makes it hard to
decide what needs to be optimized. In this case, to test the procedure, we decided to
start with a simple optimization and to progress from there.

The optimization conditions where all set up at a Reynolds number of
3000000. This was considered a good starting point for the performance optimiza-
tion of the vessel when we consider that in this phase only a single point of sail is
treat at any one calculation.

The first optimization is designed to model the behavior of the keel on a dead
run. It is probably unrealistic to set up the section at an angle of attack of zero
degrees but it seems adequate to check the methodology. It could be argued, besides,
that canting keels and similar could be designed to operate at or very close to zero
angle of attack. It does not seem very likely that such is the case but it something
that has been sometime heard.

MINIMUM DRAG SECTION

The optimization goal in this case is to find the minimum drag coefficient for a
section operating at zero degrees angle of attack and at a Reynolds number of 3000000.
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In these conditions, the performance of the baseline section and keel is:
From this keel, an opti-
mization is carried over.
In this optimization the
score of each individual is
develop simply by calcu-
lating the inverse of the
drag coefficient. This is
done in such a way
because it permits con-
figuring any optimiza-
tion as a maximization
problem.

The restrictions applied to the problem are:

The inertia is used as a
restriction here to try not
to be in a worse position
structurally than with
the baseline design.

The restrictions are imposed as “soft” barriers. This means that a violating
genome (one that lays outside the genotype) is not directly given a score of 0.
Instead, other criteria are applied to allow for solution that are very close to the
restrictions. For example, if a genome violates the minimum thickness criteria it is

given a score inversely pro-
portional to its distance to
that constraint.

Thus, the population nat-
urally evolves towards
genes that are inside of the
constraints.

In addition, the top five
sections are analyzed using

finite elements and their scores corrected. The results obtained are reflected in the
following table.
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Geometry of Baseline Section

Baseline Keel
Cd 0.00548
Maximum Thickness 0.090 m.
Inertia 1.834e-5 m4.
Blade Weight 725 kg.
Bulb Weight 1575 kg.
Max. Von Misses Stress 76.98 MPa
Maximum Displacement 15.69 mm.
Factor of Safety (Yield stress 700 Mpa) 9.09

Restrictions
Minimum Thickness 0.09 m
Minimum Inertia 1.834e-5 m4.

Geometry of Minimum Drag Section
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In this case, the drag coeffi-
cient is reduced notably. The
trade off, however is present
on the weight of the blade
that has increase. Therefore,
the vertical weight distribu-
tion has changed as the bulb
has to be made lighter. An
added benefit is the increase
in factor of safety for this
geometry.

MAXIMUM Cl/Cd

As mentioned before, considering the keel operating at zero angle of attack is
not very realistic. A modern design such as this will almost never sail dead down-
wind. For this reason, the objective of the optimization was changed to maximizing
the ratio of lift over drag. The operating point used in this case was 3 degrees angle
of attack at a Reynolds number of 3 million.

In these conditions, the performance characteristics of the baseline keel are a
little different with respect to lift and drag. The lift in this case is Cl = 0.283 while
the drag is Cd = 0.586.

Therefore, the score function used in the optimization becomes:

In turn, the performance of the optimized keel is:

After the optimization, the
section thickness has increase.
This, however, has not come
associated to an increase in
drag from the baseline keel.
In fact, the drag has come
down from 0.00548 to
0.00468. The draw back in
this case is the increase in
weight of the blade that
comes associated to a thicker

section. Of course, on the up side, there is an improvement in safety factor for this
keel as compared with the baseline.

d

l

C
CScore =
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Minimum Cd Keel

Cd 0.00317

Maximum Thickness 0.090 m.

Inertia 1.995 e-5 m4.

Blade Weight 760 kg.

Bulb Weight 1540 kg.

Max. Von Misses Stress 68.74 MPa

Maximum Displacement 14.25 mm.

Factor of Safety (Yield stress 700 Mpa) 10.18

Maximum Cl /Cd Keel
Cd 0.00467
Cl 0.34019
Maximum Thickness 0.102 m.
Inertia 2.497 e-5 m4.
Blade Weight 775 kg.
Bulb Weight 1525 kg.
Max. Von Misses Stress 62.49 MPa
Maximum Displacement 11.58 mm.
Factor of Safety(Yield stress 700 Mpa) 11.20
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MAXIMUM LIFT

A very desirable characteris-
tic for a foil is its ability to
produce a great amount of
lift. This is a requirement
most often look after in rud-
der sections than in keel sec-
tions, although for a rudder

is ultimate lift what one is usually after. However, modern race boat plan forms that
have little surface may be required at times (out of a tack or at the start) to produce a
high amount of lift. From that perspective, it seemed interesting to find what the
optimum section would be for a keel producing high lift at low angles of attack.

With that in mind, an optimization was carried over for the keel at 3º angle of
attack and for the same Reynolds number. The score function used in the optimiza-
tion process is setup directly from the lift coefficient.

The result is summarized in the following table:
In this case, the price to pay
for a high lift coefficient is a
high drag. On the other
hand, the weight of the blade
is notably reduced. This
allows for a bigger bulb at
the cost of a reduced safety
factor.

MULTI-OBJECTIVE

As was to be expected, the
mixed requirements that are asked from a modern keel calls for a more refined opti-
mization that the mere consideration of one characteristic. To accomplish that, it
was decided to carry out a multi-objective optimization.

A classical way of dealing
with multi-objective opti-
mization is by weighting the
different objectives that are
to be optimized. It is a some-
how simplistic approach but

Score=
C l

C l
0
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Maximum Cl Keel
Cd 0.00592
Cl 0.3454
Maximum Thickness 0.097 m.
Inertia 1.21 e-5 m4.
Blade Weight 679 kg.
Bulb Weight 1621 kg.
Max. Von Misses Stress 83.79 MPa
Maximum Displacement 17.01 mm.
Factor of Safety (Yield stress 700 Mpa) 8.35

Geometry of Maximum Cl

Geometry of Multi-objective Optimization
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it is quick to set up. The function that we want to optimize should include, as we
have seen, drag coefficient, lift coefficient, and measures of structural performance.

In that light, we introduce two other objectives, sectional area and inertia with
respect to the chord axis. These become objectives and not restrictions. The restric-
tion of minimal section thickness is kept due to the limitations of the rule.

The score function thus becomes:

The sub 0 values come from the baseline section. Thus, all values are normalized
with the original section. Usually, weighting factors are given to each variable to
reflect what features are sough after. In this case, we did not use any differentiation
between optimization objectives. The results from this optimization are reflected in
the following table.

With this optimization we have develop a section with a lower drag and better lift-
ing potential than the baseline. The blade is also lighter therefore we can make the
bulb bigger also. The only draw back is the reduction on safety factor. This comes to
be expected as we have reduced quite a bit the amount of supporting material in the
keel. However, the righting moment has increased considerably.

CONCLUSION

We have presented a methodology for the systematic optimization of foil sec-
tions. This optimization has been carried out for a keel section for a GP 42 racing
sailboat. A first baseline keel was created to evaluate performance gains over it. Dif-
ferent objectives have been evaluated and finally integrated into a multi-objective

0

00

0
I
I

Area
Area

C
C

C
CScore

d

d

l

l +++=
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Multi-Objective Optimization Keel
Cd 0.00461
Cl 0.3428
Maximum Thickness 0.091 m.
Inertia 1.748 e-5 m4.
Blade Weight 693 kg.
Bulb Weight 1607 kg.
Max. Von Misses Stress 82.8 MPa
Maximum Displacement 16.89 mm.
Factor of Safety (Yield stress 700 Mpa) 8.45

Final Keel

Geometry
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optimization. The optimization did not only include aerodynamic characteristics
but also took consideration of structural features both as optimization variables and
as restrictions.

The final section found presents good characteristics for the presumed use. It
has lower drag than the baseline model, higher lift and a lower weight for the struc-
ture. It can be argued that the margin of safety for the keel, although considerable,
has been reduced. An alternative approach could be to use righting moment as the
characteristic to maintain constant. This way, the reduced weight of the blade would
come associated to a reduced weight of the bulb. The complete keel assembly would
be lighter but the righting moment would be the same. At the same time, the lighter
bulb would help keeping safety factors contained.

FUTURE WORK

There are some other things to consider when it comes to the optimization of
sailboat appendices. Two things jump quickly to mind. The first is the fact that our
real measure of merit should be the speed of the boat and not directly characteristic
of any of its parts. Second, a classical approach to multi-objective optimization does
not give enough insight into the trade-offs present in the problem, more flexible
optimization schemes are needed.

A logical next step will be to link the optimization process to a velocity pre-
diction program. This would allow us to better grasp what the real improvements
can be and help us make a more educated choice.

From the optimization point of view it seems logical to do the optimization
looking for non-dominated solutions. Therefore, we will be looking after obtaining
the pareto front of solutions. This would improve the value of the solution by help-
ing the designer make choices that adjust better to the requirements while not dam-
aging much other characteristics.
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Summary Table (% change from base at 3º)
bold italics mean improvement

Min Cd Max Cl /Cd Max Cl Multi-O
Cd -20.14 -20.31 1.02 -21.33
Cl -67.61 20.42 22.01 21.09
Blade Weight 4.83 7.03 -6.34 -4.41
Bulb Weight -2.22 -3.24 2.92 2.03
Max. Stress -8.51 -16.82 11.53 10.21
Max. Displ. -10.71 -27.45 6.52 5.8
S.F. 9.30 20.23 -10.34 -9.26
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Stress on Baseline Keel and on Multi-Objective Optimization Keel

Velocity Distribution of Best Four Sections for Multi-Objective Optimization
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