ISSN: 1697-4840,

Vol XXI. No. II (2024) pp 381-388

WWW.jmr.unican.es

Container Classification: A Hybrid AHP-CNN Approach for Efficient

ARTICLE INFO

Logistics Management

Khaled Mili'*

ABSTRACT

Article history:

Received 04 Feb 2024;

in revised from 09 Feb 2024;
accepted 29 Mar 2024.

Keywords:

Container classification, Analytic
Hierarchy Process, Convolutional
Neural Network, logistics
management, artificial intelligence, big
data.

This research presents a groundbreaking approach that integrates artificial intelligence (AlI) and big data
for container classification, utilizing the Analytic Hierarchy Process (AHP) and Convolutional Neural
Network (CNN). The study aims to address the challenges associated with prioritizing containers based
on weight, destination, special requirements, financial considerations, and additional criteria.

The multi-criteria AHP method is employed to determine the relative importance of each criterion,
providing weighted inputs for the subsequent CNN classification. The hybrid AHP-CNN model is
strategically designed to optimize container classification, minimizing reshuffling movements within
container yards, and facilitating efficient prioritization.

Through a comprehensive simulation, the effectiveness and adaptability of the proposed model are
showcased. The study includes a sensitivity analysis, evaluating the accuracy of the model across
various weight scenarios. The results demonstrate the robustness of the hybrid model, achieving a high
level of accuracy in container classification. Notably, in three distinct scenarios, the model exhibited
accuracy rates of 89.00%, 88.84%, and 91.05%, respectively.
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1. Introduction.

Efficient container classification within terminal operations
serves as a cornerstone for enhancing the overall performance
and productivity of container handling facilities. As terminal
operations grapple with dynamism, diverse container attributes,
and evolving logistical demands, the need for a systematic and
adaptable classification methodology becomes increasingly im-
perative. Traditional manual categorization methods, often fall-
ing short in addressing the intricacies of contemporary termi-
nals, pave the way for transformative solutions.

Consider the significant growth in global container traffic,
exemplified by industry reports estimating nearly 11 billion met-
ric tons of seaborne trade in 2021 and projecting almost 33 mil-
lion twenty-foot equivalent units (TEU) of cargo to be trans-
ported across the Pacific Ocean in 2022. Against this backdrop,
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our research pioneers a groundbreaking approach that seam-
lessly integrates artificial intelligence (AI) and big data into
container classification, harnessing the power of the Analytic
Hierarchy Process (AHP) and Convolutional Neural Network
(CNN). The primary objective is to tackle the multifaceted chal-
lenges associated with prioritizing containers based on critical
factors such as weight, destination, special requirements, and
financial considerations.

Beyond theoretical discourse, the true impact of this re-
search resonates in the day-to-day operations of container ter-
minals. By ensuring the precise allocation of each container to
its optimal location, our methodology serves as a strategic tool
to optimize space utilization, streamline workflows, and reduce
operational bottlenecks and handling costs. In an era witnessing
an unprecedented surge in global container traffic, the accuracy
and efficiency of container classification methodologies emerge
as integral components, making this research indispensable for
the seamless functioning of the logistics industry.

To quantify the impact of our approach, we conducted a
comprehensive simulation, meticulously evaluating the effec-
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tiveness and adaptability of the proposed model. The study in-
cludes a sensitivity analysis, scrutinizing the accuracy of the
model across various weight scenarios. Notably, the results
demonstrate the robustness of the hybrid AHP-CNN model,
achieving a high level of accuracy in container classification.
The model exhibited impressive accuracy rates of values 89.00%,
88.84%, and 91.05% in three distinct scenarios, respectively,
underscoring its potential transformative influence on container
management practices.

The structure of this paper unfolds as follows: Section 2
provides a recent review of studies focused on data classifi-
cation using neural network processes, laying the groundwork
for our innovative approach. Section 3 defines our proposed
methodology, offering comprehensive details on the integrated
methods applied to container classification. The efficacy of our
work is evaluated in Section 4, shedding light on its effective-
ness. Lastly, Section 5 concludes the paper by emphasizing the
transformative potential of advanced technologies in container
management and their capacity to address industry challenges.

2. Literature Review.

Recent studies in container logistics and management have
delved into innovative approaches, notably exploring advanced
technologies, particularly the Convolutional Neural Networks
(CNNs). Our literature review strategically draws insights from
a spectrum of CNN applications, highlighting their direct rele-
vance to our proposed container management methodology.

The effectiveness of CNN processes is underscored by global
data classification methodologies as exemplified by Han et al.
(2018), Sun et al. (2019), and Varone et al. (2024). Despite
contextual variations, these studies collectively emphasize the
powerful applications of CNNs across diverse domains, sug-
gesting a pivotal role in the realm of container logistics. The
adaptability of CNN is prominently showcased in studies like
Lietal. (2021) and Li et al. (2019), illustrating the versatility of
CNN processes beyond specific domains. This adaptability be-
comes a key factor in considering CNN as a foundational tech-
nology for our proposed container classification methodology.
In container logistics, the integration of advanced technologies,
artificial intelligence (Al), and data science through CNNs for
generic data classification aligns seamlessly with our innova-
tive approach. This alignment is exemplified by the works of
Liang et al. (2024) and former Carlo et al. (2014), providing a
strong foundation for our proposed methodology. Achouch et
al.’s (2023) application of machine learning, specifically LSTM
neural networks, for predictive maintenance aligns directly with
our objective of leveraging advanced technologies to enhance
the efficiency of container logistics. This alignment empha-
sizes the broader spectrum of machine learning techniques be-
yond CNNs in our exploration. Aziz and Aznaoui’s (2020)
efficient routing approach, utilizing a combined AHP-TOPSIS
model, strategically aligns with our innovative methodologies,
particularly the combination of the Analytic Hierarchy Process
(AHP) and Convolutional Neural Network (CNN). This align-
ment points to the synergy between traditional decision-making

models and advanced neural network technologies in our pro-
posed hybrid model. Aziz, Raghay, and Aznaoui’s (2019) fo-
cus on an enhanced multipath routing protocol using Electre Tri
corresponds directly to our aim of optimizing container classi-
fication through a hybrid AHP-CNN model. This alignment
signifies the potential effectiveness of combining multi-criteria
decision-making methods with advanced neural networks. Carlo,
Vis, and Roodbergen’s (2014) overview of transport operations
in container terminals offers valuable insights into optimizing
container logistics, providing a foundational understanding of
our proposed methodology. Janiesch, Zschech, and Heinrich’s
(2021) comprehensive overview of machine learning (ML) and
deep learning (DL) anticipates future research directions, align-
ing with our exploration of Al in container logistics. This align-
ment underscores the relevance of our study in the context of
emerging trends in ML and DL. Le’s (2020) Machine Learning-
based model for predicting load-bearing capacity contributes
practical insights relevant to our study’s application in the ini-
tial research and design phase. This alignment highlights the
transferability of machine learning models in diverse applica-
tions, including our proposed container classification. Lin et
al’s (2021) smart sorting screw system, leveraging deep learn-
ing and IoT technology for real-time defect detection in man-
ufacturing, resonates with our focus on technological aspects
of container logistics. While the application domain differs,
the technological principles align, emphasizing the potential
for similar technological advancements in our context. Kishore
and Mukherjee’s (2021) evaluation of deep learning networks,
demonstrating superior classification performance, aligns with
our exploration of network architectures and their performance.
This alignment emphasizes the importance of selecting robust
network architectures for effective container classification. The
work by M. R. V., B. V,, and N. S. (2023), focusing on opti-
mizing wire electric discharge machining (WEDM) parameters
with PSO and CNN, aligns strategically with our exploration
of neural network architectures. This alignment showcases the
potential of optimization techniques combined with CNNs for
effective parameter tuning, a concept relevant to our proposed
container classification model.

While the reviewed works predominantly focus on various
applications, our study stands out by introducing a novel hybrid
model for container classification. This model, combining AHP
for generating criteria weights with the CNN model, marks a
substantial contribution to the field of container management,
offering a fresh perspective on leveraging advanced technolo-
gies for more efficient and accurate container classification.

3. Transformative Methodology: Deep Learning and Hy-
brid Models for Container Classification.

In the dynamic landscape of container logistics and man-
agement, recent strides have been made in exploring avant-
garde approaches harnessing advanced technologies. This sec-
tion delves into a literature review that draws insights from var-
ious neural network applications, with a specific emphasis on
Convolutional Neural Network (CNN) processes and their ap-
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plicability to our innovative methodology in container manage-
ment.

Our choice of a hybrid model integrating the Analytic Hier-
archy Process (AHP) and Convolutional Neural Network (CNN)
is rooted in the need for a comprehensive and adaptive con-
tainer classification methodology. Traditional categorization
methods may fall short in addressing the intricacies of mod-
ern terminals, necessitating the incorporation of cutting-edge
technologies. The CNN’s prowess in feature extraction and
pattern recognition aligns seamlessly with the nuanced require-
ments of container data analysis. Meanwhile, the AHP brings a
structured and systematic approach to prioritize decision crite-
ria, providing valuable input weights for the CNN. This unique
amalgamation not only enhances the precision of container clas-
sification but also optimizes space utilization, streamlines work-
flows, and reduces operational bottlenecks and handling costs.
The adaptability of CNN is exemplified in various studies, such
as the work of Li et al. (2021), where deep learning was adeptly
employed to distinguish between different container classes. Sim-
ilarly, Li et al. (2019) demonstrated the versatility of CNN
processes in classification tasks, transcending specific domains.
In the context of container logistics, the amalgamation of ad-
vanced technologies, artificial intelligence (Al), and data sci-
ence holds significant promise for overcoming industry chal-
lenges. The application of CNN for generic data classification,
as showcased in Han et al. (2018) and Carlo et al. (2014),
where instances are converted into suitable image format matri-
ces, aligns seamlessly with the innovative approach we propose
for container classification.

While existing works predominantly focus on varied appli-
cations, our study introduces a groundbreaking hybrid model
for container classification. This model harmoniously integrates
the Analytic Hierarchy Process (AHP) for generating criteria
weights with the CNN model. This unique amalgamation pro-
vides a robust tool for optimizing container logistics, consti-
tuting a substantial contribution to the field of container man-
agement. It offers a fresh perspective on leveraging advanced
technologies to achieve a more efficient and accurate container
classification. Furthermore, we categorize container classifica-
tion methods into three distinct learning categories: supervised,
unsupervised, and reinforcement learning. Supervised learning,
with its emphasis on precise categorization based on labeled
data, aligns seamlessly with our criteria of Weight, Destination,
Special Requirements, and Financial Considerations. In con-
trast, unsupervised learning explores autonomous mechanisms,
unveiling patterns and relationships within container data with-
out explicit supervision. This autonomy proves beneficial in en-
hancing resource allocation and decision-making in the realm
of container management. The introduction of reinforcement
learning, with its focus on dynamic decision-making, under-
scores the adaptability of the system to evolving conditions,
learning optimal strategies for container handling over time.
A comparative study presented in Table 1 between these tech-
niques provides valuable insights into their respective strengths
and applications (Lin et al., 2021).

Figure 1: Machine learning classi?cations.

Machine Learning

Unsupervised Supervised Reinforcement
Learning Learning Learning

- Association

Regression

> Segmentation Classification

Reduction of the
dimensionality

Source: Nacchia et al. (2021).

Table 1: Comparison of supervised learning via unsupervised
learning.

Approach Method Strengths ‘Weaknesses

Classification network: CNN Fast training and inference

1. Requires numerous abnormal
and normal images for training
Hard to collect abnormal

Fast training and inference;
high performance of 2.
defect localization
Identify the defect with the
bounding boxes

Supervised-based
classifier

Semantic network: U-Net, FCN
images in practical situations
3. Tedious manual
annotation work

‘Object detection network:
YOLO, Faster R-CNN

1. Imprecise defect localization
with poor reconstruction

2. Alarge amount of clean normal
data are needed to abtain
useful results

Model training without
annotation; requires only
positive datasets for
model training

Convolutional Autoencoder;
Adversarial Autoencoder

Unsupervised-based
classifier

Source: Lin et al. (2021).

Artificial Neural Networks (ANNs) stand as essential for
the efficient classification of containers based on Weight, Des-
tination, Special Requirements, and Financial Considerations.
Operating on a set of inputs, ANNs produce a singular output
through an activation function, depicted in Figure 2. Whether
linear or non-linear, this output activates neurons based on a
defined limit (Haykin, S., 1999). The architecture of the ANN
model is tripartite: input layers representing variables, hidden
layers functioning as a functional layer, and output layers il-
lustrating network outcomes. Computational neurons within
these layers establish connections and compute the weighting
parameters of the model. While ANNs can encompass multiple
hidden layers, for simplicity, we focus on a single hidden-layer
neural network. The ANN model employs a generalized non-
linear function, expressed as follows (Le, 2020):

Y = fo.(M.(fh; (b; + wi.x;) + by) @))]
Where:

1. x; are the input variables and Y is the predicted variable.

2. w; _ fh;, b are the weights, the activation function, and the
bias vector of the hidden layer, respectively

3. M, fo, b, are the weight matrix, activation function, and
bias vector of the output layer, respectively.

Inspired by the learning process of the human brain, neural
networks form a multi-layered system, illustrated in Figure 3
(Svennevik et al. (2021))
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Figure 2: Ilustration of the ANN model involving one hidden.
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Figure 3: The ANN layers.
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Source: Svennevik et al. (2021).

3.1. Convolutional Neural Network (CNN) Architecture: Un-
raveling the Layers of Precision.

In the intricate architecture of a Convolutional Neural Net-
work (CNN), comprising three pivotal layers — Convolution,
Pooling, and Fully Connected — each layer assumes a critical
role in the nuanced classification process.

Convolution Layer: The inaugural layer, the Convolution
Layer, serves as the vanguard in feature extraction from con-
tainer data. Operating as a mathematical filter on the image
matrix, it discerns intricate patterns and features within the data.

Pooling Layer: Positioned as an intermediary stratum, the
Pooling Layer undertakes the vital task of diminishing the com-
plexity of image parameters. This proves especially advan-
tageous when grappling with extensive container data. Vari-
ous spatial pooling techniques, including Max pooling, Average
pooling, and Sum pooling, contribute to effective dimensional-
ity reduction.

Fully Connected Layer (FC): Concluding the trio, the Fully
Connected Layer transforms the input matrix into a vector and
assembles the model through feature amalgamation. Its primary
mission is to categorize outputs deploying activation functions
such as Sigmoid or SoftMax. The precision of the CNN’s clas-
sification undergoes validation through the following equation:
Al = — Coet Crj @)

Cooe +C,, + F)y + Fp

rej

Where :

e C! : Containers correctly classified in category i as match-

acc*

ing the specified criteria (accepted for classification).

o C! e Containers correctly classified in category i as not
matching the specified criteria (rejected from classifica-

tion).

. F/’;: Containers incorrectly classified in category i as match-
ing the specified criteria (falsely accepted).

o F ;'?: Containers incorrectly classified in category i as not
matching the specified criteria (falsely rejected).

For imbalanced datasets, the F-measure (F,,) is calculated:

_2.P. R,

P, +R, ®)

m

Where :

e P,: Precision of the classifier.

o R.: Recall, assessing the classifier’s completeness.

Evaluation of containers categorized as not meeting specific
criteria is determined by:

Ci
Pr=r “)
Crej+FA

Additionally, the completeness of the classifier can be fur-
ther assessed through Recall R,

CflCC
= )
Chee + Fyy

c

For container classification, the evaluation of containers cat-
egorized as not meeting specific criteria is determined by the
formula: )

lre j

C.,. +F,

rej

(6)

r

3.2. The Analytic Hierarchy Process (AHP): Navigating Multi-
Criteria Decision Making.

The Analytic Hierarchy Process (AHP) stands as a venera-
ble method in the realm of multi-criteria decision-making, gar-
nering extensive use for prioritizing decision alternatives, as
underscored by Aziz et al. (2019) and Achki et al. (2017).
Renowned for its robustness, AHP emerges as a valuable instru-
ment for determining the weights of criteria, offering relevance
in the calculation of importance values for criteria weights within
our distinct context.

The AHP process unfolds through a systematic series of key
steps:

Decomposition of Decision Problem:

Identify and dissect the decision problem into its fundamen-
tal criteria, establishing a comprehensive framework for evalu-
ation.
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Assigning Importance Values:

Attribute distinct importance values to each criterion, typi-
cally utilizing the Saaty scale (Table 2). This provides a quan-
tifiable measure, elucidating the relative significance of each
criterion.

Determining Relative Importance:

Calculate the relative importance of factors by computing
eigenvectors corresponding to maximal eigenvalues. This step
enhances the nuanced understanding of each criterion’s influ-
ence on the decision-making process.

Consistency Verification:

Ensure the study’s consistency through the evaluation of
two critical factors: the Consistency Index (CI) and the Consis-
tency Ratio (CR), following the framework proposed by Aziz
and Aznaoui (2020).

Cl = Hmax 7
n-—1
CIl
R=——
¢ RCI ®)

Where:

- Umax 18 the maximal eigenvalue.

- n is the number of criteria.

- RI is the Random Index for a given n.

The Random Consistency Index (RCI), as introduced by
Aziz et al. (2018), represents random values of CI based on
the number of criteria \(n\), with specified values presented in
Table 3. This index serves as a pivotal instrument in evaluating
the consistency of the decision-making process within the AHP
framework.

Figure 4: The neural network process.
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Source: Author.

Table 2: Criteria importance meaning.

Relative importance | Meaning

1 Equal
3 Weak
5 Strong

Demonstrated over the others
9 Absolute

Source: Author.

3.3. Integrating AHP and CNN: A Holistic Container Classifi-
cation Approach.

The articulated steps collectively form the bedrock for ap-
plying the Analytic Hierarchy Process (AHP) in determining
the crucial values of criteria weights within our decision-making
framework. The derived weights, calculated through the AHP
methodology, hold pivotal significance, underscoring the im-
portance of each criterion in our decision framework. Notably,
these calculated weights serve as fundamental inputs for the
Convolutional Neural Network (CNN).

Figure 5: The proposed hybrid-model.
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Source: Author.

Figure 5 visually encapsulates our conceptual model, delin-
eating a structured approach manifesting in two primary phases.
In the initial phase, the emphasis lies on the meticulous gener-
ation of weights through the AHP process. These weights as-
sume a critical role in empowering the CNN to conduct the sub-
sequent classification of containers with precision. The symbi-
otic relationship between AHP and CNN in these two phases
stands as the nucleus of our proposed methodology, ensuring a
holistic, robust, and effective approach to container classifica-
tion.

Table 3: RCI Values.

S &
1 0
2 0
3 0.5799
4 0.8921
&} 1.1159
6 1.2358
7 1.3322
8 1.3952
9 1.4537
10 1.4882
11 1.5117
12 1.5356
13 1.5571
14 1.5714
15 1.5861

Source: Author.
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4. Container Classification: Simulation and Discussion.

In this simulated scenario, we replicate the criteria essential
to container classification, encompassing Weight, Destination,
Special Requirements, and Financial Considerations. Employ-
ing the multi-criteria Analytic Hierarchy Process (AHP), we de-
termine the weight of each criterion to categorize a set of con-
tainers into two classes: those meeting and those not meeting
the specified criteria.

The simulation is conducted on a meticulously curated dataset
that mirrors real-world container attributes and scenarios. The
dataset comprises a diverse range of containers, considering
variations in weight capacities, destinations, special require-
ments (including those for hazardous materials or refrigeration),
and financial considerations (encompassing ownership status
and lease terms). This diversity ensures that the model is robust
and adaptable to the complexities observed in actual container
terminals.

In the application of AHP to our container classification
methodology, we begin by establishing a decision matrix that
outlines the importance of different criteria. As an illustra-
tive example, the criteria include Weight (C;), Destination (C,),
Special Requirements (C3), Financial Considerations (C,4), Con-
tainer Type (Cs), and Security Level (C¢). The decision matrix
is as follows:

Table 4: Matrix of criteria importance.

Criteria Ci ] C3 Cs Cs @
C1 1.00 0.33 0.20 0.11 0.14 3.00
£ 3.00 1.00 0.33 0.14 0.33 3.00
Cs 5.00 3.00 1.00 0.20 0.20 3.00
Ca 9.00 7.00 5.00 1.00 3.00 7.00
Cs 7.00 3.00 5.00 0.33 1.00 9.00
&5 0.33 0.33 0.33 0.33 0.11 1.00

Source: Author.

The matrix is normalized as shown in Table 5.

Table 5: Normalized matrix.

Criteria C1 C Cs Cs Cs Cs
C1 0.039 0.023 0.017 0.052 0.030 0.115
C 0.118 0.068 0.028 0.067 0.070 0.115
Cs 0.197 0.205 0.084 0.094 0.042 0.115
Ca 0.355 0.477 0.421 0.472 0.627 0.269
Cs 0.276 0.205 0.421 0.157 0.209 0.346
Ce 0.013 0.023 0.028 0.157 0.023 0.038

Source: Author.

Weights for the criteria are calculated as follows: C; =
0.046, C, = 0.078, and C3 = 0.123, C4 =0.437, Cs =0.269,
Ce =0.047.

The Consistency Ratio (CR) value ensures the robustness of
this process, and the weighted matrix is presented in Table 6.

386

Table 6: Weighted matrix.

Criteria Ci C Cs Csq Cs Cs
Ci 0.001797| 0.00106 | 0.000783 | 0.002396 | 0.001382 | 0.005299
C 0.009186| 0.005294 | 0.00218 | 0.005216 | 0.005449 | 0.008552
i 0.024221|0.025205 | 0.010328 | 0.011557 | 0.005164 | 0.014139
Ca 0.155102 | 0.208404 | 0.183938 | 0.20622 | 0.273594 | 0.117528
Cs 0.074266| 0.055161|0.113283 | 0.042246 | 0.056238 | 0.093102
Cs 0.000613 | 0.001084 | 0.00132 | 0.007401 | 0.001084 | 0.001791

Source: Author.

Utilizing AHP-generated weights, we compute inputs for
the neural network by transforming the data into an image for-
mat. The correlation matrix (M), correlation vector (L), and
reordering matrix (O) are calculated using provided formulas
(Equations 9 and 10).

Hmax = 71.056,CI = 0.211,CR = 0.169.

w, ety Ohej = fi)Cier = fo)

5= ©)
VI Gy = FiP S ey = £

where f; is the means of the Category j and f; represents the
means of the category k.

SN e = )0 =)

L ;=
VEX Gy = FiP 2L G- 37

(10)

where y represents the mean of the label.

The Convolutional Neural Network (CNN) is employed to
classify the group of containers. Figure 6 visually represents the
results of the classification, demonstrating the diagnostic ability
of the hybrid AHP-CNN model.

A sensitivity analysis is conducted, evaluating accuracy across
three distinct scenarios, summarized in Table 7, with corre-
sponding accuracy values in Table 8.

Table 7: The weights of cases.

scenarios | C; C Cs Cs Cs Cs

scenario 1 | 0.046 | 0.078 | 0.123 | 0.437 | 0.269 | 0.047
scenario2 | 0.133 ] 0.154 | 0.126 | 0.237 | 0.196 | 0.154
scenario3 | 0.124 | 0.084 | 0.199 | 0.415| 0.147 | 0.030

Source: Author.

Table 8: The accuracy of cases.

scenarios Accuracy
scenario 1 89.00%
scenario 2 88.84%
scenario 3 91.05%

Source: Author.
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Figure 6: Container Classification.
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This comprehensive simulation and discussion showcase the
effectiveness and adaptability of the hybrid AHP-CNN model in
the dynamic context of container classification.

5. Limitations.

While our research has unveiled a promising hybrid model
integrating AHP and CNN for container classification, it is cru-
cial to acknowledge the inherent limitations of our study. The
dataset employed for simulation, although carefully selected,
may not capture the full spectrum of real-world container lo-
gistics scenarios. The generalizability of our findings could be
influenced by the specific characteristics of the dataset, poten-
tially limiting the applicability of our proposed model to diverse
operational contexts. Additionally, the simulation environment
may not encompass all the complexities and uncertainties in-
herent in live container terminal operations. As with any com-
putational model, our approach is contingent upon the accuracy
and representativeness of the input data. Moreover, the pro-
posed model’s performance could be sensitive to variations in
dataset size and composition. These limitations warrant cau-
tious interpretation of our results and signal avenues for future
research aimed at refining and expanding the scope of the hy-
brid AHP-CNN model in the dynamic landscape of container
management.

Conclusions.

Container management, a pivotal facet of global trade, grap-
ples with challenges demanding innovative solutions to enhance
efficiency and streamline operations. In response to these chal-
lenges, this paper presents a pioneering approach that lever-
ages artificial intelligence (Al) and big data for container clas-
sification. Building on the success of Al applications in di-
verse domains, our vision extends to applying Al for identi-
fying, monitoring, and predicting container movements. The

proposed model seamlessly integrates the Analytic Hierarchy
Process (AHP) for determining criteria weights and the Convo-
lutional Neural Network (CNN) for precise container classifica-
tion. The AHP, a multi-criteria method, plays a crucial role in
ranking the importance of criteria such as weight, destination,
special requirements, and financial considerations. The result-
ing weights serve as inputs for the CNN classifier. This hybrid
model is strategically designed to optimize container classifica-
tion, facilitating efficient prioritization, and minimizing reshuf-
fling movements within container yards. In an illustrative ex-
ample, the AHP tool was employed to generate criteria weights,
and the proposed hybrid AHP-CNN model demonstrated effec-
tiveness in container classification. This study underscores the
significance of the integrated model in delivering swift and ac-
curate container classification, showcasing its potential to revo-
lutionize container management practices.

As a future step, the proposed model can undergo sensitiv-
ity analysis and further evaluation to validate its accuracy across
various scenarios. The fusion of Al and big data in container lo-
gistics holds promising prospects for addressing industry chal-
lenges, offering opportunities for heightened efficiency and op-
erational optimization. This approach marks a transformative
stride toward the future of container management, aligning with
the evolving landscape of technology-driven solutions.
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