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In the preliminary stage of a ship design, different classification societies rules are usually followed
for predicting the structural strength after finalizing the principal particulars of the ship. Most of the
formula for evaluating the requirements of structural strength of a ship using classification societies
rules are empirical and the time required is very significant. In present study, an artificial neural network
(ANN)-based method is proposed to predict the structural strength requirements for cargo vessels. Keel
Plate Weight (KPW), Bottom Plate Weight (BPW), Inner Bottom Plate Weight IBPW), Side Shell Plate
Weight (SSPW), Bulkhead Weight (BW) and Main Deck Weight (MDW) is predicted as a function of
ships’ rule length (L), breadth (B) and draft (T). An ANN model was trained to achieve a root mean
square error (RMSE) of less than 0.13. The R? of the trained model used to evaluate the new data is
0.998, which indicates that the various requirements of weights calculated by ANN model is in good

agreement with the classification societies results.
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1. Introduction.

Determining structural strength requirements has a signifi-
cant impact on the preliminary ship design process because it
effects the overall construction costs of the ship. Now-a-days
structural strength requirements of a ship are calculated using
the Finite Element Method (FEM) and Classification Societies
rules. Classification societies rules are based on empirical for-
mulas. However, there are several drawbacks in using FEM
for preliminary structural strength analysis. For example, the
accuracy of FEM solution highly depends on the initial bound-
ary conditions. Furthermore, the high cost of FEM analysis,
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which is primarily due to the high computational power and
the time required to generate many accurate structural strength
analysis databases. Using classification societies empirical for-
mula is time consuming and much effort is also required. An-
other drawback of using those formulas is that different classi-
fication societies have different rules [Kabir et.al. 2022]. Re-
cently trained Artificial Neural Network (ANN) models have
gained attention for learning the responses of large, complex,
and nonlinear systems [Liu et.al. 2016]. Using ANN can signif-
icantly reduce the time requirements for determining the struc-
tural strength requirements.

Kabir et.al. 2022 calculated the variations of the struc-
tural strength requirements among classification societies such
as RINA, BV, IRS and DoS for a coastal cargo vessel. In present
study, required data set for ANN models is generated using the
results of Kabir et.al. 2022.

2. Principal Particulars.

The General Arrangement (GA) plan and the principal par-
ticulars of the coastal cargo vessel used by Kabir et.al.' is men-
tioned in Fig.1. and Table 1 respectively.
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Table 1: Principal particulars of the coastal cargo vessel [Kabir  ranging from 65.00 meter to 89.00 meter is presented in Table

et.al. 2022]. 2.
Particulars Data Unit Table 2: Formula for the minimum net thickness of plating.
Length Overall 83.00 [meter]
y - Locati Al RINA BV IRS
Length LWL@ Scantllng Draft 81.52 [meter] Keel — B = 5.1+0.026LK'2+4.58 | 3.8+0.040LK'+4.55 | t= (t-+0.03L)k+2
- L tudinal framis 3.2+0.018LK!2+4.5; 1.9+0.032LK2+4.5; P
Length BP@ Scantlmg Draft 79.90 [meter] Bottom T;’anngslverszﬁ'maﬁ;ng 4140 018LK1"~+4,5§ 2.8+0.032LK 244 5: £= 100400k
- i i 1 12 .
LWL extreme at scantling draft 81.52 [meter] e Bottom | P e e o oaLainease | Sor0opeaire s | (00N
0 Below freeboard deck vy - )
97% of above 79.075 [meter] Side Between Sseoud dck and e | s | e=GomeLnk
Rule leﬂgth 79.075 [meter ] Transverse watertight 13+0.004LK!2+4 55 | 13+0004LK!2+4 55
- Bulkhead L tudinal w eht 1.7+0.013LK¥2+4 5; 1.7+0.013LK2+4 5; t=(5.0 Lk
Breadth Of the Sh.lp 18.000 [meter] e T:il?and ?Na;memg 1,710 013LK1"~+4,52 1,710,013[,1(1:4 5: Heby
Area within 0.4 amidships: Y o0 2
Depth, D 6.00 [meter] vomek | L+ LGRS [0S | o
Design Draft, 4.50 [meter] S Auth
: ource: Authors.
Scantling Draft, 4.50 [meter]
Block co-efficient, Cp 0.84 [meter]
Service Speed, 10 Kn . .
; . [Kn] Where, L = Rule length, K = Material factor, s = Spacing
Deadweight 4000 [Ton] . .
of short side of the plate panel, c = Co efficient, 7y = Constant.
Source: Authors. Minimum thickness of various structural members without

and with corrosion addition of the coastal cargo vessel for dif-
Figure 1: General Arrangement plan of a coastal cargo [Kabir ferent classification societies calculated by Kabir et.al. 2022 is
et.al. 2022]. shown in Table 3 and Table 4 respectively. Table 5 represents
the weight of various structural members of the coastal cargo
vessel for different classification societies calculated by Kabir
et.al. 2022.

f

!

! . . . . . .
i = Table 3: Minimum net thickness of plating without corrosion
- | ..

addition.
Location Area RINA(mm) | BV(mm) | IRS (mm)
Keel - 9.766 9.573 10.163
Longitudinal framing 7.391 7.198
Bottom Transverse framing 8.448 8225 8.163
Outside the engine room 6.565 6.565
Inner Bottom [ Epgine room 7.665 7.665 8.372
Below freeboard deck
Side Between freeboard deck ;3?2 ;:;g 8.163
and strenpth deck . )
Transverse watertight 4.384 4384
Long:tudinal watertight 5.653 5.653
Bulkhead i 5.7191
e Tank and Wash 5.653 5653
Area within 0.4 amidships:
. Longitudinal framing 7.398 6.898
Main Deck Transverse framing 8.188 7.055 7582

Source: Authors.

Table 4: Minimum net thickness of plating with corrosion ad-

dition.
; RINA BV IRS
Location [Area Theoretical ing | Theoretical ing| Theoretical
Keel - 10766 11 10573 11 12.163 12
[Longitudinal framing 8391 8 8198 8 10163 10
Bottom
Transverse framing 9.448 9 9.225 9
Outside the engine room 8315 8 8315 8 -
Inner BOWom e sine room 9.415 9 5415 o 10372 10
. A h [Below freeboard deck 9.119 9 9.226 9
Source: Authors. Side [Between freeboard deck and 10633 1
7.766 8 7.578 8
strength deck
Transverse watertight 6.134 6 6.134 6
Bulkhead [Longitudinal watertight 6653 7 6.653 7 7.791 8
: Tank and Wash 6653 7 6653 q
3. Formula for Structural Strength Requirements. e
[Longitudinal framing 73898 B 7398 7 N
. Transverse framing 8.688 9 7.555 8 A oae %

Various formula of classification societies for determining
the structural strength requirements of a cargo vessels length Source: Authors.



Table 5: Weight of plates in cargo hold area as per classification
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societies.

Location RINA BY IRS

Keel 5.82 Tons 5.82 Tons 6.35 Tons
Bottom 64.91 Tons | 6491 Tons 81.14 Tons
Inner bottom | 51.93 Tons | 51.93 Tons 64.91 Tons
Side 3758 Tons | 37.58 Tons 4594 Tons
bulkhead 10.51 Tons | 10.51 Tons 14.02 Tons
Main Deck 23.73 Tons | 20.76 Tons 2669 Tons
Total ~195 Tons ~192 Tons ~239 Tons

Source: Authors.

4. Prediction using Neural Network.

Artificial neural networks (ANNSs) are inspired by human
brains. It can be created in a computer by mimicking the pro-
cess of real neurons [Krogh, A. 2008]. Many types of problems
can be learned to solve by ANNs [Basheer, 2000 and Abiodun
et.al. 2019]. The main objective of designing an ANN model
is that the model should make good predictions for new data or,
in other words, the model should exhibit good generalization.
The first step of designing such a network is creating a dataset.

4.1. Dataset preparation.

Ship rule length (L), Breadth (B), Draft (T), KPW, BPW,
IBPW, SSPW, BW and MDW of different classification societies
are the features of the dataset. RINA, BV, IRS and DOS is used
to generate the total 5000 datapoints. 10% of the dataset is used
as a test data and the remaining observations, 90% are used for
training. 10% data are used to validate the model’s accuracy
after each epoch. A summary of the data breakdown is shown
in Table 6.

Table 6: Partition of the dataset.

Dataset Observations
Training data 4050
Validation data 450
Testing data 500

Source: Authors.

4.2. Network architecture.

The used ANN architecture is shown in Fig.2, consisting of
an input layer, hidden layers, and an output layer with neurons
in each layer. The input layer takes all the input features namely
Ship rule length (L), Breadth (B), Draft (T) and then calculates
the weighted sum of the inputs, and then the bias term is added.
This linear combination goes through a non-linear activation

function to output transformed features. The output of the in-
put layer then goes to the next layer, and this process contin-
ues layer by layer until the last layer, which predicts the output
features namely KPW, BPW, IBPW, SSPW, BW and MDW for
RINA, BV, IRS, and DOS. Thus, the input features are mapped
to the output features through a series of mappings.

Figure 2: ANN architecture used in the scantling requirements
prediction network.

Input layer Qutput layer

Hidden layers

Source: Authors.

5. Results and Discussion.

In present study, three different ANN models are used for
training. The models are trained for 400 epochs in which all the
training data is fed to the network in batches of 32 observations
before the weights are allowed to update using the root mean
squared error (loss) of the batch. The model’s training loss is
shown in Fig. 3. RMSE of models along with network architec-
tures is shown in Table 7. From Table 7 it is evident that model
1 with two hidden layers and eight nodes predicts better.

Figure 3: Training losses of ANNs after 400 epochs.
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Table 7: ANN performance for 3 different models. Figure 6: R? value of Model 3.
ANN No of hidden | No of
model layers nodes ik 140 ~
Model 1 2 8 0.126520
120 ~
Model 2 2 16 0.128367
Model 3 3 8 0.170921 o 1001
Source: Authors. _4% 80 1
The R? values of the models were shown in Figs. 4~6. From E 60 1
Figs. 4~6, it is noticed that Model 1 has the highest R? value of o
0.998 which is close to the maximum value of 1.0. 40 1
R? = 0.997
Figure 4: R? value of Model 1. -
140 1 0 T T T T T
0 25 50 75 100 125 150
120 - True Values
Source: Authors.
" 100 A
5
T 801 Conclusions.
3
o o The purpose of this study is to develop an ANN model to
104 calculate the structural strength requirements of cargo vessels.
R? = 0.998 Three different classification societies and DoS formula is used
20 | to generate the dataset for ANN. ANN models are trained and
the results are found to be in good agreement with the classi-
0 . : : . . fication societies results. Therefore, ANN can be used as an
0 25 50 75 100 125 150 alternative to classification societies formula for predicting the
True Values structural strength of the cargo vessels in the preliminary design
Source: Authors. stage.
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