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In this study, the behaviors of jacket-type offshore structures are numerically investigated. The exam-
ined four-legged models with a total height of 60 m have four layers and three different cylindrical
element sizes are fixed to the seabed. The structures are under the effect of environmental forces,
including wind and wave loads, as well as operational loads. Three different marine environments
have been generated in environmental modeling. Thus, the parametric study has been performed using
bidirectional fluid-structure interaction (FSI) analyses of 36 models. Structural outputs such as dis-
placement, reaction force, and stress values are determined by numerical analyses. In the second part
of the study, the implementation of machine learning algorithms, including Xgboost, Random Forest,
and Support Vector regressors, is employed to automate the assessment of performance in jacket-type
offshore structures. The evaluation of these machine learning models in predicting the displacement,
reaction force, and stress values of offshore jacket structures is conducted, revealing Xgboost as the
most promising technique, although with satisfactory overall performance across all algorithms. These
findings provide empirical evidence supporting the feasibility and applicability of employing machine
learning methodologies in the analysis of performance for jacket-type offshore structures.

© SEECMAR | All rights reserved

1. Introduction.

In the present era, jacket-type offshore structures predom-
inantly function as essential components of energy facilities.
Construction in each type of soil and depth, availability of in-
stallation vessels and driven equipment, and being light are some
advantages of these structures.

These advantages enable offshore structures to be preferred
over single pile, multiple piles, and suction caisson types (Zhang
et al. 2020, Xie et al 2021).Although jacket-type offshore struc-
tures have such advantages, the construction of jacket structures
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is more difficult for those on land, due to adverse environmen-
tal situations, including wave-wind conditions and difficulties
in assembly and disassembling (Mousavi et al. 2023).

Performing maintenance and remedial operations on off-
shore jacket structures poses significant challenges, occasion-
ally bordering on infeasibility, thereby emphasizing the imper-
ative for rigorous safety protocols. In this context, the acquisi-
tion of data, along with elucidating the source and fundamental
nature of the amassed data within a system, assumes paramount
importance (Liu, Hajj and Bao, 2022). The data collection pro-
cess can be carried out with artificial and real data. Experi-
mental and numerical studies may be performed to obtain real
data. With increasing resources of data and computing power
resources from time to time, traditional methods such as numer-
ical and experimental techniques are being replaced by artificial
intelligence (Lin et al. 2022).

Numerical solutions can be used for training the artificial
models as used in the study of (Zhang and Zhao 2022). In this
work, CFD simulations are used as machine-learning models
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of a novel wake. By learning from the CFD model through
flow field data, the machine learning model generalizes well
to unknown flow scenarios and learns the qualitative features of
wind turbine wake flows successfully. The mixed finite element
method is employed by (Ferreira et al. 2022) to generate the in-
put data set of fluid flow fractured porous media. As output,
the generative adversarial networks model predicts the pressure
inside the fracture. Similarly, the training data of structural de-
formation of a deck plate is supplied from a nonlinear buckling
finite element method in the study of (Oh et al. 2021), neural
network-based generative adversarial network model success-
fully predicted the distortion with high accuracy value. In all
three studies, it has been stated that the estimation time is on
the order of seconds.

Parametric studies by finite element methods have also been
performed in the literature. In the study of (Zhang et al. 2020),
different types of brace are modeled to investigate brace type on
the bearing capacity and load transfer mode of offshore jacket
structures. The numerical studies are carried out by the finite
element software ABAQUS. Besides, the effect of story num-
ber and floor plan on the modal behavior is examined. Another
study has investigated the effect of brace types (Tran, Kim and
Lee 2022). The new three-legged jacket-type structures with
three various bracing topological forms are developed based on
the external diameters and superstructure mass of existing four-
legged jackets. Different loading directionality effects are also
investigated by twelve different design load cases. The best per-
formance among the bracing systems has been detected in the
end. In the other study by the same authors (Tran, and Lee,
2022), the lowest material costs of the four different depths of
bracing types in two different water are investigated by apply-
ing the same load effects (Tran, Kim and Lee 2022). In the
study of (Jalbi and Bhattacharya, 2020), the effects of struc-
tural properties, environmental forces, and soil characteristics
on the design procedures of the offshore jacket structure are ex-
amined. For this purpose, the parametric study is performed for
varying wind velocity, water depth, weight of the superstruc-
ture, and soil types to reveal the concept design of the structure.
Structural behaviors of three jacket-type offshore structures are
compared under regular and irregular wave-loading conditions
(Wei, Myers and Arwade, 2017). The reference model, stiffer
model than the reference model, and more flexible model than
the stiffer model constitute three jacket models. The other para-
metric studies investigating the numerical behavior of offshore
jackets can be given as (Chen et al 2016, Bagheri and Kim,
2016, Abhinav and Nilanjan, 2019, Lu et al 2019).

To estimate the dynamic response of offshore structures un-
der environmental loads, fluid-structure (FSI) methods are com-
monly used to investigate the dynamic behavior of structures.
FSI analyses coupling attributes are classified as one-way and
two-way. Finite element analysis is employed for both exami-
nations. Finite elements supported by FSI analysis can be gen-
erated by either the Eulerian technique (Martı́nez et al. 2009)
or the Lagrangian technique (Gücüyen, Erdem and Gökkuş,
2016). In addition, both techniques can be used in Arbitrary La-
grangian Eulerian (ALE) (Korobenko et al. 2017, Liu, 2016.)
and Coupled Eulerian-Lagrangian (CEL) (Gücüyen et al. 2020)

analyses. Abaqus finite element program is widely used by re-
searchers for interaction modeling (ABAQUS User’s Manual,
2015).

Although FSI-aided parametric studies have been performed
about the effect of layer numbers and section geometries on off-
shore jackets, there are few studies about CEL-based two-way
FSI analyses in the literature. In this study, three-dimensional
finite-element models of the structures and surroundings are
modeled within the framework (ABAQUS/CAE) via CEL anal-
ysis. In the first part of the study; displacement, reaction force,
and Von-Mises stress values of the section geometries have been
determined for different environmental load effects.

Artificial intelligence (AI) is a broad term that encompasses
many different types of technology. It is a branch of com-
puter science that develops intelligent systems that are able to
perform tasks usually done by humans (Khalilpourazari et al.
2021, Khalilpourazari and Pasandideh, 2021). Machine learn-
ing is a subset of AI that allows computers to learn from data
without being programmed in advance. It has the ability for
a computer program to automatically improve its performance
on a given task by analyzing past performance. In order for ma-
chine learning to work, there needs to be an input dataset with
enough information for the algorithm to learn from. The algo-
rithm then goes through this dataset and tries different meth-
ods until it finds one that works best for the given problem.
Machine learning algorithms can be applied to any task where
there is a set of features (inputs) and desired labels (outputs).
There are a lot of machine learning algorithms in the literature
that can be applied to any type of problem where prediction or
decision-making under uncertainty is required: Xgboost, Ran-
dom Forest, Support Vector, etc. (Özyüksel and Naser, 2022,
Naser, 2021).

Random Forest is a type of supervised machine learning al-
gorithm that uses a large collection of decision trees to model
complex relationships between variables. It is a powerful algo-
rithm that can make accurate predictions on the basis of limited
data. The main goal of Random Forest is to create a decision
tree from an input dataset, which can be used for classifica-
tion or regression analysis. Random Forest uses an ensemble
method for creating decision trees, where it takes multiple de-
cision trees created from different subsets of data as inputs and
combines them into one final tree with higher accuracy than
any individual tree would have achieved by itself. It can be
used to predict continuous outcomes or categorical outcomes. It
has been widely used in the fields of machine learning, predic-
tion modeling, text analytics, data mining, and bioinformatics
(Breiman, 2021).

Extreme Gradient Boosting (Xgboost) is a gradient-boosting
machine learning algorithm that can be applied in a wide range
of fields. It is an open-source library that aims to solve large-
scale regression problems. It can be used for classification and
regression and has the ability to make predictions using dif-
ferent types of features. It works by iteratively building mod-
els with different parameters, which makes it suitable for both
small and large datasets. It has been widely adopted in the field
of data science and has been applied to many problems such
as time series, text analysis, natural language processing, and
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machine learning (Chen and Guestrin, 2016).
The support vector regressor is a machine-learning algo-

rithm that is used for classification and regression problems. It
is a nonparametric technique that uses a kernel function to fit a
regression model. The kernel function is one of the most impor-
tant elements in support vector regression. A kernel function
can be used to reduce the dimensionality of data sets, which
makes it easier for the algorithm to find a solution. The sup-
port vector regressor has been extensively applied in the field of
computer vision and artificial intelligence. It has been widely
used in many fields including image processing, natural lan-
guage processing, bioinformatics, statistics, etc (Quinlan, 1986).

In the second part of the study, machine learning automates
how jacket-type offshore structures perform by using prior ex-
perience and statistical data to forecast the future performance
of these structures in different environmental load effects. Xg-
boost, Random Forest, and Support Vector regression algorithms
are implemented to carry out the analyses. The results show
that the jacket-type offshore structure can be effectively ana-
lyzed using the machine learning algorithms presented in this
study and that these models are both reliable and effective. With
continued advances in machine learning, these findings show a
promising direction for predicting the behavior of jackets based
on Abaqus outcomes.

2. Structural Models and Environmental Conditions.

In the structural modeling phase of the study, four-legged
jacket-type offshore structures with different layers are gener-
ated in the software. Layer numbers are determined as 3, 4,
5, and 6. The structures modeled using the Lagrangian ap-
proach and the marine environment simulated through the Eu-
lerian technique are depicted in Figure 1.a. B, b, and d indicate
the base, the base side lengths, and the water depth, respec-
tively. Perspective view of a six-layer structure and its environ-
ment are shown in Figure 1. a. On the other hand, the distribu-
tion of the layers of the structural models is presented in Figure
1. b. In this figure, h1, h2, h3, and h4 represent the height of
the layers for each model. Wave and wind loads are defined as
environmental conditions in the analyses. Since the water depth
is constant in all models, the effect points of the wave and wind
forces differ according to the models.

Figure 1: Coupled model and dimensions.

Source: Authors.

2.1. Structural Models.
Jackets typically consist of corner legs, fixed to the seabed,

interconnected with horizontal and diagonal bracings. The base
dimensions of all structural models (BxB) are 27 m × 27 m as
shown in Figure 1. a. On the other hand, the top dimensions
are 16 m × 16 m. The structures are modeled using structural
steel material with Young’s modulus of 2.1x1011N/m2. Pois-
son’s ratio is assumed to be 0.3 and the density value is taken
as 7850 kg/m3. On the other hand, the total mass of the plat-
form is 1.50x105 kg for all structures. Non-structural masses
are defined as concentrated masses and symmetrically located
at four corner nodes. Layer levels are equal in each relevant
structure and the values are h1=20 m, h2=15 m, h3=12 m, and
h4=10 m for 3, 4, 5, and 6 layer structures respectively. So, the
total height of the structures is 60 m. The classification of the
cases according to structural models is given in Table 1. D and
e represent the diameter and thickness of the sections. L and m
subscripts indicate leg and other members respectively. A to-
tal of 12 structural cases (SC) are determined by considering 3
different section sets for the structures having 4 different layer
levels.

Table 1: Description of the structural cases.

Source: Authors.

2.2. Environmental conditions.
The evaluated structures are taken into consideration for the

combination of dead, wind, and wave loads. All structures serve
at a depth of water of 30 m. The remaining 30 m part is in
contact with the air. Wave forces affect structural members in
contact with the marine environment. The other members that
are in contact with air are affected by static wind forces. Hy-
drodynamic forces can be computed based on wave velocity (u)
and acceleration (ú).

u =
H
2

gT
LW

cosh[2π(y + d)/LW ]
cosh(2πd/LW )

cos(
2π
LW

x −
2π
T

t) (1)

The velocity value derived from Eq. (1) is calculated based
on wave theory, which relies on wave parameters including
wave height (H), wave period (T), and water depth (d) at the
location of the structure. Three environmental cases, including
different H and T values as presented in Table 2 are used in the
scope of the study.

Table 2: Description of the environmental cases.

Source: Authors.
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The value of the wave length (Lw) in Eq. (1) is computed
as 99.92 m, 87.82 m, and 56,20 respectively from cases 1 to 3
according to Linear Wave Theory. Wave velocity is designated
as the input velocity for the analysis. Seawater is characterized
as an EOS material with a density of 1025 kg/m3, a dynamic
viscosity of 1.50 x 10−3 Ns/m2, and a sound velocity of 1560
m/s. Additionally, wind force constitutes another factor affect-
ing elevation above the water surface (y).

ua = UBASkT ℓn (y/z0) (2)

The environmental load impacting the structure is computed
using Eq. (3) based on the Eurocode velocity profile (ua) in any
UBAS is the reference wind velocity (24 m/s), kT symbolizes
the terrain factor (0.17) and z0 is the roughness length (0.01).

Fa =

∫ L−η

η

1
2
ρau2

a(y)CsA(y)dy (3)

In Eq. (3), A represents the cross-sectional area of the mem-
ber, ρa stands for the mass density of air, and Cs denotes the
shape coefficient of the member, which is assumed to be 0.50
for cylindrical sections (Dyrbye and Hansen, 2004).

3. CEL Based FSI Analysis.

This section presents a bidirectional FSI analysis conducted
through the CEL procedure using Abaqus. The analysis em-
ploys the conservation equations for mass, momentum, and en-
ergy within the framework of the Lagrangian approach.

Dρ
Dt
+ ρ∇ · v = 0 (4)

ρ
Dv
Dt
= ∇ · σ + ρb (5)

De
Dt
= σ : D (6)

In the equations, v, ρ, σ, b, and e represent material veloc-
ity, density, Cauchy stress, body force, and internal energy per
unit volume, respectively. The conservation equations formu-
lated for the Lagrangian approach are reassessed for the Eule-
rian approach through Eq. (6), resulting in the derivation of the
generalized form given by Eq. (7).

Dφ
Dt
=
∂φ

∂t
+ v · (∇φ) (7)

∂φ

∂t
+ ∇ · Φ = S (8)

In the equations, φ, Φ and S are randomly assigned solution
variables, flux function, and source term respectively. An ex-
planation of the CEL technique is given in more detail in (Ben-
son and Okazawa, 2004, Reddy, 2010). Structures and envi-
ronments are instantiated based on the aforementioned mathe-
matical definitions using Abaqus software. The modeling pro-
cedures are outlined as follows: The Eulerian section encom-
passes both material-assigned and unassigned (void) regions.

The boundary conditions, along with the structural mesh con-
figurations, are depicted in Figures 2-3 for the SC-1 case.

Figure 2: Boundary conditions.

Source: Authors.

Figure 3: Mesh configuration.

Source: Authors.

In Figure 2, the lower portion of the Eulerian domain is des-
ignated as an impermeable wall, the surfaces along the longer
sides are designated as the far field, and the surfaces along the
shorter sides are specified as the inlet and outlet boundaries.
Eq. (1) is employed to determine the inlet velocity. Thus,
the same parameters as the inlet surface are implemented to
far fields. Wind forces affect the junction points of the sec-
ond and third layers, as presented in Figure 2. N 347906 and
168405N are applied as wind load to the second and the third
layers respectively for SC-1. Eq. (3) is used for the other struc-
tural cases and similarly calculated wind forces are affected by
the junction points that contact with air. The mesh configura-
tion of the finite element model is seen in Figure 3. The La-
grangian portion employs 4-node doubly curved elements for
thin or thick shells, featuring reduced integration, hourglass
control, and finite membrane strain (S4R) formulation. Fur-
thermore, the Eulerian section utilizes 8-node linear brick ele-
ments, incorporating reduced integration and hourglass control
(EC3D8R). Node spacings of 0.01 m and 0.25 m are considered
for the Lagrangian and Eulerian components, respectively. The
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number of nodes and elements that occur in the structural cases
is given in Table 3.

Table 3: Node and element numbers of structural cases.

Source: Authors.

The equation of motion for the structure which is consid-
ered by finite elements program under external forces (F) can
be written as follows.

mNJ ẌN |t =
(
F J − IJ

)
|t (9)

In Eq. (9); mNJ represents the mass matrix, FJ is the exter-
nal applied load vector transferred from the Eulerian part, and IJ
symbolizes the internal force vector caused by internal stresses
of elements and acceleration. IJ is determined from the sin-
gle elements such that a global stiffness matrix does not need
to be constituted. Coupled Eulerian-Lagrangian analyses can
be generated in Dynamic, Explicit steps only via the Explicit
integration rule given by (ABAQUS User’s Manual, 2015). Fi-
nite element analyses are conducted using a time step of 0.01 s,
spanning a total duration of 64 s, equivalent to the eight-wave
period of EC-1.

4. Results.

Finite element analyses are conducted with a time step of
0.01 s, covering a total duration of 64 s, corresponding to the
eight-wave period of EC-1. Maximum displacement, reaction
force, and Von-Mises stress values that are obtained from CEL
analysis are given in Table 4.

Table 4: Maximum values of analysis results.

Source: Authors.

Maximum displacement values vary between numerical mod-
els. While the difference is 12.94% between 6-layer and 5-
layer models, it is obtained as 16.66 % between 5-layer and

4-layer models, and the variation is 10.71% between 4 and 3-
layer models. Displacement distributions for each case where
maximum displacement values occur are presented in Figure 4.

Figure 4: Displacement distributions of each case.

Source: Authors.

Maximum reaction force values are also compared between
models. The differences are determined as 5.17%, 2.15%, and
7.95% between 6-layer and 5-layer models, 5-layer and 4-layer
models, and 4-layer and 3-layer models, respectively. Finally,
maximum Von-Mises values vary by 5.17% between 6-layer
and 5-layer models, 9.92% between 5-layer and 4-layer mod-
els, and 6.94% between 4-layer and 3-layer models. Von-Mises
stress distributions of the cases for the maximum values are
given in Figure 5.

Figure 5: Stress distributions of each case.

Source: Authors.

Coupled Eulerian and Lagrangian interaction for SC-1/EC-
2, SC-4/EC-2, SC-8/EC-2, and SC-12/EC-2 are presented in
descending order, in Figure 6. The movement of the water sur-
face at different moments and the displacement of the structure
depending on this movement can be seen in this way.

5. Machine Learning Analyses.

In this section, we evaluate the performance of three ma-
chine learning algorithms on the behavior of jacket-type off-
shore structures under different load effects. The dataset con-
sists of 36 different jacket-type offshore structures under dif-
ferent conditions. The inputs are the layer number, wave load,
leg diameter, and other member diameters. The outputs are dis-
placement, reaction force, and stress values. Separate analyses
are carried out for each of the outputs using machine learn-
ing techniques. Moreover, in order to assess how well one
model performs in comparison to another, four metrics—R2,
RMSE, MAE, and MAPE—that are commonly employed are
compared.
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Figure 6: Coupling of Eulerian and Lagrangian domains.

Source: Authors.

5.1. Prediction of Displacement Values.

An endeavor is made to estimate the displacement values
of jacket-type offshore structures employing regression algo-
rithms. In Table 5, the computed R2 value of 0.97 indicates
that the Xgboost regression model exhibits a high level of re-
liability and effectiveness in predicting the results of offshore
structures. Additionally, the Xgboost technique exhibits lower
RMSE, MAE, and MAPE values compared to other regression
models, which confirms its efficacy in the estimation process.

Table 5: Performance metrics of regressors for testing data
based on displacement output.

Source: Authors.

The performance metrics of the regressors for the training
data based on displacement output are shown in Table 6 for Xg-
boost, Random Forest, and Support Vector regressors. Upon
evaluating the models on the training dataset, it is evident that
all three regressors exhibit commendable performance, achiev-
ing accuracies above 95%. However, the Xgboost algorithm
notably outperformed its counterparts, achieving a remarkable
accuracy rate of 100%.

Table 6: Performance metrics of regressors for training data
based on displacement output.

Source: Authors.

Figure 7 shows the distributions of observed displacement
versus the predicted displacement for the three regression mod-
els. The results reveal that all three machine learning algorithms
yield improved fits concerning the training data and exhibit re-
duced variance in their forecasted values. Notably, Xgboost
stands out as the most successful model among the three in this
regard.

Figure 7: Dispersion of displacement values.

Source: Authors.

5.2. Prediction of Reaction Force Values.
The regression models are used to estimate the reaction force

values of jacket-type offshore structures. We leverage four met-
rics to assess the performance of regression models. These in-
clude R2, RMSE, MAE, and MSE. The performance metrics
of the regression models based on the reaction force outputs
for the testing data are shown in Table 7. After conducting a
performance evaluation, the Random Forest model with an R2

value of 0.94, RMSE of 5.67, MAE of 4.62, and MSE of 0.05
is ranked first in terms of performance metrics among the three
models. It is followed by Support Vector and Xgboost regres-
sors, respectively.

The performance metrics of the regression models based on
the reaction force output of jacket-type offshore structure data
can be seen in Table 8. Xgboost provides the best results when
it comes to training data in comparison with the other two algo-
rithms, as shown by a 95 % R2 score. In addition, the Support
Vector regressor exhibits underfitting behavior by having an R2

score of 0.87 with the testing data, but only an R2 score of 0.72
with the training data.
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Table 7: Performance metrics of regressors for testing data
based on reaction force output.

Source: Authors.

Table 8: Performance metrics of regressors for training data
based on reaction force output.

Source: Authors.

The distributions of the observed reaction force vs. pre-
dicted reaction force of the three applied models are compared
on the same graph in Figure 8. They are found to be in agree-
ment, especially for the Xgboost and Random Forest models
for training data. However, when evaluated in testing data, Xg-
boost had a slightly lower fit than the other models.

Figure 8: Dispersion of reaction force values.

Source: Authors.

5.3. Prediction of Stress Values.

The performance of three machine learning algorithms is
evaluated to find out their effectiveness in accurately predicting
stress values of types of offshore structures. Table 9 displays the
regression performance metrics for the test data based on the
stress outputs. Xgboost outperforms other algorithms, having
0.92 R2, 72.95 RMSE, 56.52 MAE, and 0.20 MAPE values.
The performance of the Support vector regressor is the worst,
with an accuracy of 0.80.

The regression performance metrics for the training data
based on stress outputs are presented in Table 10. The results

Table 9: Performance metrics of regressors for testing data
based on the output of stress value.

Source: Authors.

show that three machine learning algorithms are all successful
in predicting the stress value of training data. However, Xg-
boost performs better than the other two algorithms in terms of
100 % R2.

Table 10: Performance metrics of regressors for training data
based on stress value output.

Source: Authors.

The distributions of the observed vs. predicted stress values
of the testing and training data by three regressors are compared
in Figure 9. The results show that Xgboost provides a better fit
than all other models for both testing and training data, indi-
cating that Xgboost can be used to predict the stress values of
offshore jacket-type structures.

Figure 9: Dispersion of stress values.

Source: Authors.

Conclusions.

The distributions of the observed vs. predicted stress val-
ues of the testing and training data by three regressors are com-
pared in Figure 9. The results show that Xgboost provides a bet-
ter fit than all other models for both testing and training data,
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indicating that Xgboost can be used to predict the stress val-
ues of offshore jacket-type structures. Numerical analyses are
widely used in structural designs and scientific studies with re-
cent developments in computer technology. In this study, two
different numeric analysis methods are used to investigate the
behavior of the jacket-type offshore structures by considering
the environmental loads. In the first part of the study, CEL-
based FSI analyses are utilized. A total of 12 structural mod-
els are analyzed in 3 different marine environments. Displace-
ment, reaction force, and stress values are determined for each
structural case as presented in Table 4. While maximum values
are obtained from EC-3 marine environment, minimum values
are obtained from EC-2 marine environment for all structural
models. In addition, maximum displacement values occur in
models having the minimum diameter and wall thickness val-
ues for the same marine environment and layer number. On the
other hand, maximum reaction force and stress values emerge
in models with maximum diameter and wall thickness. Dif-
ferences between models according to section, diameter, wall
thickness, and layer properties for the same marine environ-
ment are presented proportionately in the Results section. It is
seen that these rates remain lower than the rates realized in the
change of section or marine environment according to Table 4.
Consequently, it can be stated that the layer number has no sig-
nificant effects on the examined outputs. The flow environment
surrounding the structure is also obtained as well as the struc-
tural results. The structural displacement that changes because
of the movement and free surface elevations of the wave at dif-
ferent time steps are seen in Figure 6. With the free water sur-
face model, the effect of the wave motion on the unfluctuating
water level on the structure has also been taken into considera-
tion. The movement above the unfluctuating water level could
be ignored in the case of CEL technique is not utilized. In the
second phase of the investigation, predictive machine learning
models are developed to assess the influence of layer number,
wave load, leg diameter, and other member diameters on the
displacement, reaction force, and stress performance of jacket-
type offshore structures. Additionally, the performance of three
distinct machine learning models concerning the behavior of
jacket-type offshore structures under diverse load effects is eval-
uated.XGBoost demonstrates superior performance compared
to Random Forest and Support Vector algorithms in predict-
ing displacement and stress values. In contrast, Random Forest
emerges as the most effective predictor for reaction force val-
ues. These findings indicate the promising potential for utiliz-
ing Xgboost and Random Forest in modeling the performance
of offshore jacket-type structures. The present study contributes
to the existing literature by employing machine learning algo-
rithms to predict the performance of jacket-type offshore struc-
tures under different environmental load effects. Moreover, the
research explores the reliability of machine learning predictions
for forecasting purposes. It is crucial for future investigations to
assess the accuracy of various machine learning algorithms and
comprehend the parameters that influence their performance.
Such endeavors will further enhance our understanding and uti-
lization of machine-learning techniques in this domain.
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