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The precise prediction of wave overtopping (WO) discharge is crucial for the design of coastal protec-
tion structures, particularly in light of the challenges posed by climate change. This study focuses on
a quarter-circle breakwater (QBW) comprising a vertical back wall, a horizontal base slab on a rubble
mound foundation, and a quarter-circle front wall facing incident waves. Utilizing Support Vector Ma-
chine (SVM) and Least Square Support Vector Machine (LSSVM), the research aims to estimate the
mean overtopping discharge at the QBW. Input parameters, including incident wave steepness (H;/¢T?),
depth parameter (d/gT?), percentage of perforations (p), and crest height parameter (R./H;), are em-
ployed, with mean overtopping discharge (q/gH,T) as the output. Model performance is assessed using
indicators such as Root Mean Square Error (RMSE), Correlation Coefficient (CC), Scatter Index (SI),
and Index of Agreement (d). Results suggest that both SVM and LSSVM are effective in estimating
mean overtopping discharge, with LSSVM demonstrating superior accuracy compared to SVM. The
study findings contribute valuable insights for coastal engineering, particularly in designing structures

resilient to wave overtopping amid ongoing climate change effects.
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1. Introduction.

Prolonged emissions of greenhouse gases have induced sig-
nificant alterations in climatic conditions, consequently affect-
ing the ocean system. Observable changes include shifts in sea-
water temperature and an increase in sea levels. Given these
transformations, the design and construction of coastal protec-
tion structures have become imperative. Among these struc-
tures, breakwaters play a vital role in maintaining tranquility in
ports and harbors. They contribute to erosion reduction, facili-
tate beach growth, and aid in preventing thermal mixing.

While rubble mound-type breakwaters have historically been
prevalent, evolving oceanic conditions have spurred the devel-
opment of innovative breakwater designs. Breakwaters are gen-
erally classified as rubble mounds, vertical walls, and com-
posite breakwaters. Incorporating perforations in breakwaters
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serves multiple purposes, enhancing wave energy dissipation
and allowing sand entrapment to mitigate erosion. This study
focuses on a specific breakwater model, the quarter-circular
breakwater (QBW). QBWs, characterized by a hollow caisson
structure resting on a rubble mound foundation, represent a
modification of the traditional semicircular breakwater (shown
in Figs. 1 and 2). Notably, QBWs, with their reduced width,
necessitate less concrete volume and rubble mound foundation
compared to SBWs. This adaptation addresses both structural
and environmental considerations in contemporary coastal pro-
tection design.

In the design phase of coastal protection structures, care-
ful consideration of wave overtopping is paramount. The pri-
mary objective is to either prevent or mitigate wave overtop-
ping volumes. While numerical modeling and empirical equa-
tions are available to address these challenges, they often entail
complexities. Physical modeling studies, though highly accu-
rate, tend to be time-consuming. In the current scenario, soft
computing techniques emerge as valuable tools, particularly in
the early stages of coastal structure design. Artificial Neural
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Figure 1: Section of Quarter Circle Breakwater.
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Figure 2: 3-D view of perforated and non-perforated QBW.
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Networks (ANN), Support Vector Machines (SVM), and other
hybrid models are increasingly employed to tackle the intri-
cacies of coastal problems effectively. These soft computing
approaches provide a more efficient and accessible means of
addressing complex issues associated with wave overtopping,
facilitating a streamlined design process for coastal protection
structures.

In recent decades, numerous researchers (Dwarakish and
Nithyapriya 2016; Kundapura and Hegde 2018; Rubio et al.
2009; Yusof and Mustaffa 2016; Guo et al. 2019; Mahjoobi
and Adeli Mosabbeb 2009; Zeng et al. 2019; Ramesh et al.
2022) have employed diverse soft computing techniques to pre-
dict the performance of various types of breakwaters. In 2009,
Mahjoobi and Adeli Mosabbeb utilized the SVM model to fore-
cast the significant wave height, employing data gathered from
the deep waters of Lake Michigan. The SVM’s predictive ca-
pabilities were compared with those of ANN’s and Multi-Layer
Perceptron (MP) models. The findings led to the conclusion
that the SVM model demonstrated successful utility in accu-
rately predicting significant wave height, offering a competitive
alternative to the other models assessed.

Kuntoji et al. (2017) applied a SVM to estimate the dam-
age level of a Tandem Breakwater. Various kernel functions
were applied to predict the damage level, and the evaluation of
their performance was based on various statistical parameters.
Among the diverse kernel functions considered, the Radial Ba-
sis Kernel Function (RBF) yielded superior results. The assess-
ment of different kernel functions underscored the effectiveness
of RBF in predicting the damage level of the Tandem Breakwa-
ter according to the measured statistical parameters.

Guo et al. (2019) employed an enhanced Least Square SVM

(LSSVM) model to forecast the water level on daily basis of
the Yangtze River in China. The outcomes were juxtaposed
with those derived from the traditional LSSVM. The improve-
ment in the LSSVM model involved the introduction of an ad-
ditional bias error control term. The findings indicated that the
enhanced LSSVM model yielded more precise results than the
conventional LSSVM, underscoring the efficacy of the intro-
duced modification.

Alqahtani et al. (2023) extensively investigated and com-
pared the effectiveness of SVM and Gradient-Boosted Tree (GB-
T) methods in accurately predicting WO discharge for coastal
structures featuring composite slopes, mainly focusing on “with-
out a berm” condition. The findings indicated that the GBT
technique exhibited superior accuracy in predictions compared
to the SVM technique. Noteworthy outcomes highlighted the
GBT model’s substantial reduction in overall error, showcasing
its effectiveness in accurately estimating wave overtopping dis-
charge. This study also contributes valuable insights into im-
proving prediction methods, particularly emphasizing the en-
hanced performance of the GBT model in the context of coastal
structure design and management.

In 2023, Alshahri and Elbisy explored artificial neural net-
work - based approaches, including the MP neural network (M-
PNN), cascade correlation neural network (CCNN), general re-
gression neural network (GRNN), and SVM with radial-bias
function. Their investigation mainly focused on estimating WO
discharge for coastal structures characterized by a straight slope
and without a berm. Comparative analysis was conducted be-
tween the results obtained from GRNN and those from the afore-
mentioned models. The study included a comprehensive sen-
sitivity analysis to assess the significance of each predictive
variable. The outcomes demonstrated high accuracy for both
validation methods, with the leave-one-out validation method
slightly surpassing the cross-validation method.

Very few studies has been focused on assessing WO dis-
charge at a QBW utilizing soft computing techniques. Wave
overtopping holds pivotal importance, particularly in the design
of the emerged QBW structure. This study addresses this gap
by utilizing SVM and LSSVM for predicting wave overtopping
discharge across quarter-circular breakwaters featuring various
radii and perforations. Performance evaluation incorporates key
statistical parameters such as RMSE, CC, SI, and d, facilitating
a comprehensive comparison to determine the model with su-
perior prediction accuracy.

2. Data Collection.

The dataset utilized in this research originates from investi-
gations conducted by Mane et al. (2023) through physical mod-
eling at the Marine Structures Laboratory of the National Insti-
tute of Technology Surathkal in Karnataka. The experimental
setup includes a wave flume with dimensions of 50 m x 0.71 m
x 1.1 m (length x width x depth). Wave generation is facilitated
by a bottom-hinged flap, also known as a wave paddle, posi-
tioned in a deep chamber with dimensions of 6.3 m x 1.5 m x
1.4 m (length x width x depth), located at one end of the setup,
as represented in Fig 3.
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Figure 3: Sectional of View of wave flume (not to scale).
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In this physical model study, Quarter Circular Breakwater
(QBW) models of radii 0.4m, 0.45m, and 0.5m, each with per-
forations ranging from 0% to 20% (0, 1.25%, 5%, 10%, 15%
and 20%), were examined. Table 1 displays the range of exper-
imental variables, while Table 2 provides a description of the
parameters. The investigation involved placing a water collect-
ing tray on the lee-side of the QBW to measure the volume
of water collected after overtopping. The resulting physical
model dataset comprises 870 samples, which were randomly
divided into training data (75% or 653 samples) and testing data
(25% or 217 samples). Buckingham’s 7t theorem was employed
for dimensional analysis in the physical model investigation,
converting parameters into non-dimensional counterparts. The
dataset underwent normalization using a specified equation, en-
suring that values fall within the range [0,1].

Zporm = % (1)
max — 4min

Where Z is the data point; Z,,,,,: Normalized data point;
Znax and Z,,;, are the maximum and minimum among all the

data points respectively.
The performance of the model is evaluated with the help of sta-
tistical parameters RMSE, CC, SI and d. The equation of each
parameter is listed below, where Z,; = predicted A 7=

¢TH; >
q — ; q 7. _
observed T Zp,i= average of predicted T Z. = average
of observed ﬁ, N= number of observations.
1

1. Root Mean Square is calculated as,

, No Zpi=Zoi)*
RMSE = % )

2. Correlation Coefficient is calculated as,

SN (Zoi— Zoi)Zoi— Zos )

cC= = =
VSN Zoi-Zo) SN (ZZei)
3. The Scatter Index is calculated as,
SN0 Zpi—Zoi)
s;=——~% 4)

Zoi

4. The index of agreement is calculated as,

N 7 2
PO e : )
Zilio ( |Zpi_zoi| + |Zoi_zoi| )

Table 1: Range of Experimental Variables.

‘Wave-Specific Parameters Experimental Range

Incident Wave Height, H;

0.08, 0.10, 0.12, 0.14, 0.16
(m)

Wave Period, T (sec) 1:4;1.6,:1.8,:2:0,.2:2

=
Depth of Water, d (m) 0.4.305.375,0 0.::)0212.4_5. 0.405,50,475.
Structure Radius (m) 04 045 0.5
Percentage of Perforation, p 0.1.25. 5. 10. 15 and 20
(%) ,1.25, 5, 10,

Source: Authors.

Table 2: Parameter Description.

Parameter Description of the parameter
Hy/gT? Non-dimensional wave steepness
d/gT? Non-dimensional depth
R./H; Non-dimensional crest height
q/gH;T Non-dimensional mean WO discharge

Source: Authors.

3. Support Vector Machine.

3.1. General

Based on the type of problems to be solved, the techniques
in Machine Learning are mainly classified into three categories:
supervised, semi-supervised, and unsupervised learning. Sk-
ouras et al. (2013) came up with the idea of the SVM, which is
based on the Structural Risk Minimization (SRM) Principle and
the Statistical Learning Theory. SVM is a type of supervised
learning technique used to solve classification (pattern recogni-
tion) and regression (function approximation) problems. There
are two phases involved in this technique, the training phase
and the testing phase. The flow chart (Fig 4) below illustrates a
Supervised Learning Algorithm’s training and test phases.

Support Vector Machine, with the aid of kernel functions,
transforms input data into some high-dimensional feature space.
According to the type of kernel functions an optimal separating
hyperplane is created in this high-dimensional space. The most
commonly used kernel functions are linear, polynomial, gaus-
sian, etc. Hyperparameters for each kernel should be carefully
tuned as the performance of the model depends on this. Sup-
port Vector Regression uses Vapnik’s ?-insensitive approach to
form a symmetrical flexible tube around the hyperplane. The
distance between the hyperplane and the decision boundary is
of this threshold value ?, and the points outside this threshold
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Figure 4: Two Phases of Supervised Learning Algorithm.
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value is ignored. The regularization parameter y gives a penalty
to the points outside the threshold value. If y is small, it results
in a larger margin decision boundary and if the value of vy is
large then it results in a decision boundary with a smaller mar-
gin. The kernel bandwidth (o) represents the influence of the
training points in the given model. They are inverse to the ra-
dius of influence of training points. Large values of 0 may lead
to overfitting of the model.

A SVM model is developed for the prediction of WO dis-
charge over QBW with the help ofscikit-learn in Python. In this
study, kernel functions linear, polynomial, and RBF are exam-
ined, and their details are outlined in Table 3. The parameters
that need to be optimized in SVM include the regularization pa-
rameter (), which is common for all kernel functions and the
kernel bandwidth (o) for the RBF kernel. The hyperparameters
are tuned using Random Search in Python. The model is trained
using these hyperparameters and the trained model is simulated
on the test dataset. The model’s performance during the training
and testing phases is assessed using the metrics such as RMSE,
CC, SI, and d.

Table 3: Different Kernel Functions.

Kernel Name Kernel Function

Linear (dot product) G(xj.xr) = Xj'xk
Gaussian G(xjxn) = exp(—Il—xx| )
Polynomial G(xj.xr) = (1+x7'xx)9, where g is in the set {2,3,...}.

Source: Authors.

3.2. Results and Discussion.

The optimized hyperparameters obtained are listed in Table
4. To validate the model, a k-cross validation technique with a
chosen value of k as 10 is applied to the training dataset. The
subsequent analysis, detailed in Table 5, reveals that the RMSE
and scatter index for the RBF kernel are lower than those ob-
tained for the linear polynomial kernels. Moreover, the CC and
Index of Agreement values for the RBF kernel are closer to
one compared to the other kernel functions. The statistical pa-
rameters collectively signify that the RBF kernel yields more

accurate predictions for the mean WO discharge in comparison
to the linear and polynomial kernel functions. Visual interpre-
tation through scatterplots further reinforces these findings.

Table 4: Optimized Hyperparameters.

Parameter ” .
Kernel Linear Polynomial RBF
v 80 188 95
degree - 4 -
a - - 4.1

Source: Authors.

Table 5: Performance metrics for SVM Model for Prediction of
Mean Overtopping Discharge.

. Linear Kernel Poly. Kernel RBF Kernel
Metrics - - -
Train Test Train Test Train Test
RMSE 0.1264 0.1219 | 0.1222 | 0.1127 | 0.0835 | 0.09235
CC 0.5041 0.4758 | 0.5519 | 0.5576 0.821 0.7519
SI 0.7826 0.8157 0.756 0.7541 | 0.5169 0.6179
d 0.631 0.6282 | 0.6531 | 0.6853 | 0.8964 0.8618

Source: Authors.

Scatter plots (Figs 5 to 10) are drawn with observed and
predicted mean overtopping discharge on the x-axis and y-axis
respectively, for train and test data of each kernel. The best-fit
line obtained for the observed and predicted q/gTH; for each
kernel is plotted. A 45° line is also drawn to compare with
the results obtained. Notably, for both the training and testing
data, the RBF kernel outperforms the other kernels, affirming its
superior predictive capability in estimating mean overtopping
discharges.

Figure 5: Scatter Plot for Train of SVM Model (Linear Kernel).
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Figure 6: Scatter Plot for Test of SVM Model (Linear Kernel).
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Figure 7: Scatter Plot for Train of SVM Model (Polynomial

Kernel).
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Figure 8: Scatter Plot for Test of SVM Model (Polynomial Ker-

nel).
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Figure 9: Scatter Plot for Train of SVM Model (RBF Kernel).
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Figure 10: Scatter Plot for Test of SVM Model (RBF Kernel).
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4. Least Square Support Vector Machine.

4.1. General.

LSSVM is a formulation of a SVM where instead of quadratic
programming a set of linear equations is solved. They are re-
lated to regularization networks. The MATLAB LSSVMlab
toolbox provides simple code for solving classification and re-
gression problems. It is possible to train and test LSSVM mod-
els using various kernel functions. Linear, Polynomial and Ra-
dial Basis Functions are different kernel functions considered
here.

The Least Square Support Vector Machine can be explained
below (Samui 2011).

Consider a given set of N training data points,

{x, yk}sz | » with input data x; € RY, and output y; €1,

where R" and r are the N-dimensional and one-dimensional

vector spaces respectively. In feature space, LSSVM models
take the form:

y) =w'ox) +b ©6)
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where the feature map () maps the input data into a higher
dimensional feature space.

weRV:ber;

w = an adjustable weight vector; and b = the scalar thresh-
old.

In LSSVM, for function estimation, the following optimiza-
tion problem is formulated:

Minimize: 10’ w+ 1 T, €
Subject to:
y) =wo(x)+b+e, k=1....N (7)
The linear kernel function is given by,
k (X, x1) = ;% ®)

The polynomial kernel function is given by,

k(e x) = (I 407620 )

(t - intercept and d -polynomial degree)

The radial basis function employed in this analysis is ex-
pressed as:

a0 (= x)
2072

k (xx, xp) =eXp{ } kiIl=1,..N (10

(0? - squared kernel bandwidth)

Using LSSVMIlab in MATLAB, an LSSVM model is cre-
ated to forecast mean overtopping discharge over a quarter-
circle breakwater. The data are normalized in the range [0,1].
The train data consists of 653 samples and the test data consists
of 217 samples. K-cross validation optimization technique is
performed on the training dataset. The value of k is chosen as
10. The kernel parameters degree is tuned for the polynomial
kernel and o is tuned for the RBF kernel. The accuracy of
the developed model depends upon the optimization of hyper-
parameters. The trade-off between smoothness and fitting error
minimization is determined by the regularization parameter. A
smaller y would ensure a good fitting of the model. The capac-
ity of the kernel to fit the function would decline as bandwidth
increases because the hyperplane would get flatter. There are
different optimization techniques available for efficient tuning
of the hyperparameters. The hyperparameters are tuned using
simplex.

The sequence of commands to be followed to obtain an
LSSVM model are:

Step 1. The command initlssvm is carried out using an
object-oriented interface.

Step 2. The parameters are tuned using tunelssvm.

Step 3. The tuned parameters are used to train the model
using trainlssvm.

Step 4. The performance of the model on test data can be
simulated using simlssvm.

4.2. Results and Discussion.

The models are trained for different kernels using the tuned
parameters listed in Table 6. To assess the efficiency of the
models, a comprehensive evaluation is conducted considering
key metrics such as RMSE, CC, SI and d. The statistical param-
eters obtained for the different kernels are listed in Table 7. No-
tably, the values of RMSE and SI of the linear and polynomial
kernel surpass those of the RBF kernels. The correlation coef-
ficient and index of agreement (d) are closer to 1 for the RBF
kernel when compared to linear and polynomial kernel. The
results showed that the model with RBF kernel performs bet-
ter for training and testing data in comparison to other kernels.
The RBF kernel notably shows a higher correlation of 0.9573
and 0.8155 for training and testing datasets, respectively. Ad-
ditionally, the RMSE values for the RBF kernel stand at 0.0413
and 0.08041 is obtained for the training and testing datasets.
The scatter plots for LSSVM models of different kernels are
given in Figs 11 to 16.

Table 6: Optimized Hyperparameters.

Kernel | Linear | Polynomial

v | 0.7652

degree - 4 -
0.055

230 105

o2 - -

Source: Authors.

Table 7: Performance metrics for LSSVM Model for Prediction
of Mean WO Discharge.

Linear Kernel | Polynomial Kernel | RBF Kernel

Metrics - - -
Train | Test Train Test Train | Test
RMSE [0.1261] 0.1203 | 0.0942 | 0.0939 [0.0413] 0.08041
CC ]0.5068| 0.4851 0.765 0.734 10.9573] 0.8155
SI 0.7806| 0.8051 0.58 0.628 [0.266 | 0.538
d 0.6151] 0.6158 | 0.8544 0.843 10.9756] 0.8998

Source: Authors.



Figure 11: Scatter Plot for Train of LSSVM Model (Linear Ker-

nel).
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Figure 12: Scatter Plot for Test of LSSVM Model (Linear Ker-

nel).
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Figure 13: Scatter Plot for Train of LSSVM Model (Polynomial

Kernel).
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Figure 14: Scatter Plot for Train of LSSVM Model (Polynomial

Kernel).
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Figure 15: Scatter Plot for Train of LSSVM Model (RBF Ker-

nel).

o
o]

[=)]

q/gTH,

Predicted
=)
'S

v =10.8625x + 0.0222

0,2 0,4 0,6 0,8
Observed q/gTH;

Source: Authors.

Figure 16: Scatter Plot for Test of LSSVM Model (RBF Ker-

nel).

=]
00

Predicted q/gTH,
=]
[=)]

y=0.7465x + 0.0383

CC=0.8155

0,2 0.4 0.6 0.8
Observed q/gTH;

Source: Authors.



V. Mane et al. / Journal of Maritime Research Vol XXI. No. III (2024) 219-227 226

5. Comparison of performance of SVM and LSSVM mod-
els.

SVM and LSSVM models were developed with the aim
of predicting the mean WO discharge over a QBW for vary-
ing radii and perforations. A comprehensive comparison of
these models was conducted using performance metrics such
as RMSE, CC, SI and d. For SVM and LSSVM models, the
Radial Basis Function performed better in comparison to linear
and polynomial kernels. The assessment incorporating statisti-
cal parameters and visual representations such as scatterplots,
revealed that LSSVM consistently outperformed SVM for both
training and testing datasets. Notably, the SVM model with
RBF kernel exhibited RMSE, CC, SI and d of 0.09235, 0.7519,
0.6179 and 0.8618 respectively, for the test dataset. In compar-
ison, the LSSVM model with the RBF kernel yielded improved
performance with RMSE, CC, SI and d of 0.08041, 0.8155,
0.538 and 0.8998 respectively for the test dataset. Collectively,
these results indicate that the LSSVM model utilizing the RBF
kernel stands out as the most precise and efficient model for
forecasting mean overtopping discharge across quarter-circular
breakwaters.

Summary and Conclusions.

Summary.

In this study, the prediction of mean WO discharge at a
QBW under varying conditions of radii and perforations em-
ploying SVM and LSSVM. The dataset utilized is collected
from the experimental studies conducted by Mane et al. (2023)
at NITK Wave Mechanics Laboratory. The SVM model is de-
veloped using scikit-learn in Python while the LSSVM model
is developed using the LSSVMlab toolbox in MATLAB. The
models are developed with different kernel functions includ-
ing linear, polynomial and RBF. To assess the efficacy of these
models, the performance metrics RMSE, CC, SI and d are uti-
lized. Comparisons among the models are facilitated by evalu-
ating the metrics, enabling the selection of the superior model
for predicting mean overtopping discharge. This approach en-
sures a rigorous examination of the model performance, lead-
ing to the identification of the most effective model based on
the considered statistical criteria.

Conclusions.

Based on the present study, the following conclusions are
drawn:

1. For the SVM model, when comparing the RBF kernel to
linear and polynomial kernel functions, the RBF kernel
produced better results. For the RBF kernel, the optimum
values of y and o are obtained as 95 and 4.1, respectively.
The predicted mean overtopping discharge values exhibit
a good correlation value of 0.821 and 0.7519 for the train-
ing and testing dataset. Additionally, the RMSE and SI
values are minimized, and the obtained values of ‘d’ is
closed tol.

2. For the LSSVM model, superior outcomes are achieved
with the RBF kernel compared to alternative kernels. For
RBF kernel y and o are obtained as 105 and 0.055, re-
spectively. The predicted values exhibit a good corre-
lation of 0.9573 for the training dataset and 0.8155 for
testing data. Moreover, the RMSE and SI obtained are
close to zero, and the value of ‘d’ is close to 1.

3. Utilizing Soft Computing Techniques such as SVM and
LSSVM allows for the prediction of mean WO discharge
at a quarter-circle breakwater. In comparison to the SVM,
LSSVM demonstrates a higher accuracy in predicting q /
¢TH;) Therefore, LSSVM stands out as a viable alterna-
tive tool for estimating mean WO discharge at QBW.
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