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This article is devoted to the advanced control of a vertically autonomous underwater robots that are
used for the assignment of various search and rescue operations on the high seas. The kinematic and
dynamic models of the robot are described by the differential equations with six degrees of freedom
with respect to the Earth frame. Due to the uncertain marine environment, these equations are non-
linear and strongly coupled. This control is a combination of funnel-based control and sliding mode for
the velocity and depth control; which consists in taking the funnel control as much as a time-varying
coefficient of the sliding surface. However, the implementation of this control faces difficulties caused
by non-measurable variables, which are resolved by the addition of an extended super-twisting observer.
The stability study using the Lyponuv method and simulation results confirm the effectiveness of the
proposed method for controlling the speed and trajectory of AUVs in the vertical plane.
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1. Introduction.

Human beings still want to reduce their efforts for the ex-
ploitation of the seabed, maintenance of dams and pipeline in-
stallations; using submarine robots [1] which are classified ac-
cording to their decisional and energy autonomy [2, 3]. For
a great freedom of movement, the solution is to use an au-
tonomous robot that can transmit its location to the satellite
navigation and tracking system [4-6]. There are a number of
scientific challenges that AUVs can face; knowing that its dy-
namic model is non-linear and highly coupled. The vehicle is a
nonholonomic system that depends on an uncertain path due to
the currents influencing its model [7]. The hydrodynamic coef-
ficients are often poorly known, since their measurement with
physical sensors and their estimation is almost impossible in
the presence of disturbances, which have consequences on the
trajectory tracking [8, 9].
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However, several research projects are being conducted to
address the aforementioned difficulties. In the research done
in [10] the authors have developed a disturbance observer for
the purpose of estimating unknown and unstable environmental
disturbances over time, besides that a dynamic controller dis-
tributed to have the parameters of position and speed. [11] pro-
posed a third-order continuous FFTESO in order to estimate the
group disturbances and their first derivatives of a fully actuated
AUV. By comparing this approach with GESO and FTESO,
they proved that the convergence of the system is maintained,
faster and more accurate in a finite time, which will greatly de-
pend on the choice of the initial state of the system. The sim-
ulation results in [12] show that the combination of an ESO
and a finite-time control solves the chattering problem and the
uncertainty of the AUV model, by continuously observing on
convergence speed in a finite time and robustness. The authors
in [13] adapted the funnel constraints to dynamically adjust the
robot trajectory in a complex environment, while maintaining
the desired performance. J. Andrich et al. [14] studied the con-
trol of an Autonomous Underwater Vehicle (AUV) by using
(PFM) in order to allow a visual guiding of AUV. The aim is
to track pipelines and cables. The proposed method is assessed
and compared to other known researches within the same topic.
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Kotov et al. [15] explored the potential use of autonomous
underwater vehicles for mineral resource exploration and ex-
traction in the Russian Federation and its continental shelf. Ad-
ditionally, they conducted a comprehensive review of the cur-
rent status, applications, and limitations of the global utilization
of these vehicles.

To improve quadrotors robustness, [16] proposed an un-
known input observers (UIOs) for trajectory and attitude with
asymptotic error convergence. Next, an appointed-time funnel
control for the regularization of the trajectory tracking error,
avoiding the singularity problem.

The main purpose of this paper is to control an AUV in div-
ing plane, by combining a funnel-based control and a sliding
mode control using an extended super-twisting observer for the
estimation of non-measurable parameters; where the forward
speed and the vehicle’s depth represent the output variables. A
relative degree of nature two is attributed to the depth subsys-
tems. The idea of this command is to consider the funnel-based
control as much as a time-varying coefficient of the sliding sur-
face, and also to design a control of the vehicle’s forward ve-
locity, unlike previous studies where they consider it to be con-
stant. This approach incorporates an additional control term
thus improving the performance of the proposed controller.

This paper is structured as follows. The second section
provides the AUV’s mathematical representation in the vertical
plane. The third section, explains the structure of the observer
and its stability. In the fourth section, the velocity control and
depth control are proposed. In the fifth section, the efficiency
results of the proposed method are demonstrated by means of
computer simulations. The final section concludes the paper.

2. Mathematical modeling of AUV.

The general motion dynamics of the AUV are designed by
the kinematic and dynamic motion of this rigid body with 6 de-
grees of freedom (DOF) [17, 18]. This dynamic will be repre-
sented by 12 first-order differential equations, coupled and with
constant coefficients [19]. In order to create control laws that
are simpler, we are interested in the diving plane whose control
surfaces are horizontally zero. The following equations (1) rep-
resent the heave and pitch equations of motion of the vehicle in
the body-fixed coordinate frame:

m (u̇ + qω) = Xqqq2 + Xu̇u̇ + Xωqωq + Xqδuqδ

+Xωωω
2 + Xωδδuω + Xδδu2δ2

− (W − B) sinθ + FP

m (ω̇ − uq) = Zq̇q̇ + Zω̇ω + ZuquqZuωuω + Zuuu2δ

+ (W − B) cosθ + Zω|ω|ω |ω|

+Zq|q|q |q| + ZH

Iyyq̇ = Mq̇q̇ + Mω̇ω̇ + Muquq + Muωuω + Muuu2δ

− (zGW − zBB) sinθ

− (xGW − xBB) cosθ + Mω|ω|ω |ω|

+Mq|q|q |q| + MP

θ̇ = q

ż = −usinθ + wcosθ (1)

Where; u is the vehicle’s forward velocity, ω is the heave
velocity, θ is the pitch angle (θ,π/2+kπ), q is the pitch angle
velocity, z is the vehicle’s depth, δ is the control fin angle, Fp
is the propulsion force which control the forward velocity, m
is the mass of the vehicle, I yy is the moment of inertia of the
vehicle about the pitch axis, W denotes the vehicle’s weight and
B is the vehicle buoyancy, Z q., Z uq, Z ω., M q. . . . are the
hydrodynamics parameters. Lastly, M P and Z H identify the
cross- flow drag terms and evaluate them as disturbances. The
state vector is as follows:

x =[
x1 x2 x3 x4 x5

]T
=
[

u ω q θ z
]T (2)

The control vector:

v =
[

FP δ
]T

(3)

And the inertial matrix:

M =


m − Xu̇ 0 0 0 0

0 m − Zω̇ −Zq̇ 0 0
0 −Mω̇ Iyy − Mq̇ 0 0
0 0 0 1 0
0 0 0 0 1

 (4)

In state space forms, the vehicle dynamics (1) are repre-
sented as:

Mẋ = fx (x, t) + gx (x, v) (5)

Where
ẋ = f (x, t) + g (x, v) (6)

Whose outputs are:

y1 = u , y2 = z (7)

With
f (x, t) = M−1 fx (x, t) (8)

And
g (x, v) = M−1gx (x, v) (9)

3. Nonlinear observer design.

Assume that just the system output u and z are measured, it
needs to estimate the other state variables w, q and θ.

Define the new variables:

ξ =
[
ξ1, ξ2, ξ3

]T
= [z, usin θ ,wcos θ ]T (10)

Then;

ξ̇1 = −ξ2 + ξ3
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ξ̇2 = uqcos θ + u̇sin θ (11)

ξ̇2 = −wqsin θ + cos θ ( fw (x, t) − gw(x)δ)

The state observer is chosen as:

˙̂
ξ1 = −ξ̂2 + ξ̂3 + Γ1

˙̂
ξ2 = uq̂cos θ̂ + Γ2 (12)

˙̂
ξ2 = uq̂cos θ̂ + Γ2# (12)

˙̂
ξ3 = −ŵq̂sin θ̂ + cos θ̂ ( fw (x̂) − gw (x̂) δ) + Γ3

Where:
Γ1 = µ1

∣∣∣̃ξ1
∣∣∣2/3sign(̃ξ1)

Γ2 = µ2
∣∣∣̃ξ1
∣∣∣1/3sign

(̃
ξ1

)
(13)

Γ3 = µ3sign(̃ξ1)

And µ1, µ2, µ3 are gains to be chosen according to (LEV-
ANT, 1998) and (LEVANT, 2003) where:

ξ̃1 = ξ1 − ξ̂1

ξ̃2 = ξ2 − ξ̂2 (14)

ξ̃3 = ξ3 − ξ̂3

One choice of parameters that meets the requirements in
(LEVENT, 1998) and (LEVANT, 2003) is according to (CHA-
LANGA ET AL, 2016), µ1 = 6L

1
3 , µ2 = 11L

1
2 and µ3 = 6L ,

where L is a sufficiently large constant.
The error dynamics of the state observer can be written as:

˙̃ξ1 = −ξ̃2 + ξ̃3 − µ1
∣∣∣̃ξ1
∣∣∣2/3sign(̃ξ1)

˙̃ξ2 = F̃1 − µ2
∣∣∣̃ξ1
∣∣∣1/3sign

(̃
ξ1

)
(15)

˙̃ξ3 = F̃2 − k3sign(̃ξ1)

Where
F̃1 = u

(
qcos θ − q̂cos θ̂

)
(16)

F̃2 =

−wqsin θ + cos θ ( fw (x, t) − gw (x) δ)

+ŵq̂sin θ̂ − cos θ̂ ( fw (x̂) − gw (x̂) δ) (17)

If
∣∣∣F̃1
∣∣∣ < ∆1 and

∣∣∣F̃2
∣∣∣ < ∆2

Then the state observer errors goes to zero in finite time
(MORENO, 2012). Since the AUV is a mechanical system then
F̃1 and F̃2 will not change infinitely fast. It is therefore a valid
assumption to assume that F̃1 and F̃2 are bounded.

4. Controller design.

This section provides a list of necessary definitions and the-
orems.

Definition 1: The performance funnel is based on a bounded
function ψ (t) where:

ψ (t) = 1
φ(t) (18)

And

Fφ:= {(t, e) ∈ R≥0 × R ∥ e (t) < ψ (t)} (19)

The purpose of funnel-based control is to create a shape for
the tracking error’s transient response and place it in the funnel.

The funnel structure Fφ and the path of the output track-
ing error e(t) are depicted in Figure 1. The funnel’s shape is
effective in achieving transient response characteristics such as
overshoot, rise time, time settling and so forth in this approach.

Make φ (t) a component of the class that follows:

Φ:=
{
φ (t) ∈ w1,∞ (R+,R+)|
∀t > 0 : φ (t) > 0

}
(20)

And

Figure 1: Performance funnel.

Source: Authors.

limτ→∞ infφ (t) > 0,∀τ > 0 : φ−1 (.) (21)

is globally Lipschitz.
w1,∞(R+,R+) is a classification of function that have limited

derivatives. The funnel’s boundaries ψ (t) are influenced by the
appropriate function selection of φ (t), with the objective is to
keep the error within the funnel Fφ. Considering that:

λ1 = supt∈(0,∞)ψ (t) , ϕ∗:=in f tϵ(0,∞)ψ (t) (22)

Also, φ (t) ≥ 1
λ1

;∀t ≥ T where T are relatively large, in the
end e(t) is confined by λ1. In Ilchmann et al. (2002), a funnel-
based control with the structure

u (t) = −k (t) e (t) (23)

was utilized to address the issue of output tracking for a dy-
namical system with relative degree one. k (t) is a time-varying
gain that is based on the funnel shape and was chosen as the
solution:

k (t) = φ(t)
1−φ(t)|e(t)| =

1
ψ(t)−|e(t)| (24)
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This controller prevents errors from approaching the funnel
boundary by increasing the gain when they approach it, unlike
the adaptive approach which is dynamically generated.

4.1. Velocity control.

The objective in this part is to control the forward speed, for
which you need to choose the most suitable Fp control.

Take x1 = y1 = u as an output variable, and ud as a constant
reference.

A sliding manifold is referred to as such because x1 has
relative degree one:

σ = x1 − ud (25)

By deriving it in terms of time:

σ̇ = fu (x, t, δ) + guFp (26)

Knowing that Fp is assumed to be a combination of funnel
based-control and sliding mode as follows:

FP = veq + v1 + v2 (27)

With:

veq =
−k0z1−εk1 fu(x,t,δ)+εk1u̇d

εk1gu
(28)

v1 = −βsign (σ) (29)

v2 = −
1

k1gu
k (t)σ (t) (30)

Where the constants k0, k1, ε > 0 , ε infinitely small and the
time-varying gain k(t) of the funnel depends on its shape and
sliding surface:

k (t) = 1
ψ(t)−|σ(t)| (31)

As a result, the closed-loops system that follows:

σ̇ = −k0z1+εk1u̇d
εk1

− 1
k1

k (t)σ (t) − guβsign (σ)
(32)

Considering the sliding mode manifold S0 is designed as:

S 0 =
σ(t)

Fφ(t)−|σ(t)| (33)

With:
σ = x1 − ud (34)

Fφ (t) = γ0 e−a0t + γ∞ (35)

When:

γ0 ≥ γ∞ > 0 ; a0 > 0 ; γ∞= lim
t→+∞

Fφ (t)

The derivative of (1) can be calculated as:

Ṡ 0 = Fφ ΦF γ̇ − ḞφΦF γ (36)

ΦF =
1

(Fφ(t)−|σ(t)|)2 (37)

Ṡ 0 = Fφ ΦF

[
fu (x, t, δ) + guFp

]
− ḞφΦF γ

(38)

To make S 0 converge to zero within a finite time the non-
singular terminal sliding mode manifold is designed as:

β
∣∣∣Ṡ 0
∣∣∣q/p

sign (S 0) + S 0 = 0 (39)

Where β > 0 ; p and q are positive add integers with p < q
Substituting (36) into (39), the controller is designed as:

Fp =
1
gu[

Ḟφ

Fφ
γ − 1

Fφ ΦF

1
β |S 0|

q/p sign (S 0) − u̇d − fu (x, t, δ)
]
(40)

Stability analysis:

Lemma 1: Assuming there is a V (t) continuous positive
definite function, which satisfies the following inequality:

V̇ (t) + nVγ (t) ≤ 0 (41)

(∀t > t0 , the constant n > 0

∀ t0 :

V1−γ (t) ≤ V1−γ (t0) − n (1 − γ) (t − t0) t0 ≤ t ≤ ts, V (t) ≡ 0 (∀t ≥ ts) and
ts ≤ t0 +

V1−γ(t0)
n(1−γ)

 (42)

Theorem:
Consider the sub-system (1) with the control law (40) , then

the tracking error σ is bounded.

Proof:
Choose the following Lyapunov function:

V1 =
1
2 S 0

2 (43)

Differentiating (43), we have:

V̇1 = S 0Ṡ 0 (44)

V̇1 =

S 0

[
Fφ ΦF

[
fu (x, t, δ) + guFp

]
− ḞφΦF γ

] (45)

Substituting (40) into (45) yields:

V̇1 ≤ −
1
β |S 0|

(p+q)/q ≤ 0 (46)

Inequality (46) implies that S 0 is bounded then the stability
of the sub-system (1) with the control law (40)

Now, we need to further prove the finite time convergence.
We have:

V̇1 ≤ −
1
β
|S 0|

(p+q)/q

≤ − 1
β

(2)(p+q)/(2q)
(

1
2 S 0

2
)(p+q)/(2q)

(47)
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≤ − 1
β

(2)(p+q)/(2q) V1
(p+q)/(2q) (48)

≤ − k1 V1
k2 (49)

Where
k1 =

1
β
2(p+q)/(2q) (50)

k2 = (p + q)/(2q) (51)

These, we can obtain:

V̇1 + k1 V1
k2 ≤ 0 (52)

According to lemma (1), it can be calculated that the terminal
sliding manifold so can converge to the equilibrium point within
a finite time t1 given by:

t1 = V1−K2(t0)
k1(1− K2) (53)

4.2. Depth control.
The objective in this part is to regulate depth by acquiring a

constant reference for the variable z.
Take x2 = y2 = z as an output variable and considering the

new variable ẋ2 = x3 = −usinθ + ωcosθ , the depth subsystem
is:

ẋ2 = x3

ẋ3 = f 3 (x, t) − g3 (x) δ (54)

With:

f 3 (x, t) = −uqcosθ − ωqsinθ + cosθ fω (x, t)

g3 (x) = cosθ gω (x) (55)

The sliding manifold s2 is represented as follows:

s2 = σ̇2 + α2σ2 (56)

(α2 > 0)

Where:
σ2 =

ez
Fφz−|ez |

(57)

By deriving it in terms of time:

σ̇2 = Fφ2φF2 ėz − Ḟφ2φF2 ez (58)

With:
φF2 =

1
(Fφ2−|ez |)2 (59)

Deriving σ2 for a second time:

σ̈2 = Fφ2φF2 ëz + Γ (x, e, t) (60)

Where:
Γ (x, ez, t) = Fφ2 φ̇F2 ėz + Ḟφ2φF2 ėz−

Ḟφ2 φ̇F2 ez − Ḟφ2φF2 ėz − F̈φ2φF2 ez
(61)

The derivative of s2 is:

ṡ2 = σ̈2 + α2σ̇2 (62)

ṡ2 = Fφ2φF2

(
f3 (x, t) − g3 (x) δ − z̈d

)
+ Γ (x, ez, t) + α2σ̇2

(63)

ṡ2 = Fφ2φF2

(
Σ (x, ez, t) − g3 (x) δ − z̈d

)
+α2σ̇2

(64)

The nonlinear function Σ(x, t) is:

Σ (x, ez, t) = f3 (x, t) + Γ(x,ez,t)
Fφ2φF2

(65)

To ensure that s2 converge to zero in a finite time, the sliding
mode collector is designed as follows:

s2 + β2|ṡ2|
q2/p2 sign (s2) = 0 (66)

(β2, q2, p20 and p < q )

The control law is designed as:

δ = − 1
g3(x)

[
−z̈d +

∑
(x, ez, t) + 1

FφφF2

(
α2σ̇2 +

1
β2
|S 2|

q2/p2 sign (S 2)
)]

(67)
Theorem 2:
For the subsystem expressed by (54) and using the control

in (67), the vehicle depth will converge to their reference in fi-
nite time.

Proof:
By choosing the Lypunov function as follows:

V2 =
1
2 s2

2 (68)

By deriving it in terms of time:

V̇2 = s2 ṡ2 (69)

By replacing ṡ2:

V̇2 =

S 2

[
Fφ2φF2 (

∑
(x, ez, t) − g3 (x) δ − z̈d) + α2σ̇2

] (70)

Substituting (67) into (70) yield:

V̇2 ≤ −
1
β2
|S 2|

(p2+q2)/q2 ≤ 0 (71)

V̇2 ≤ −
1
β2

2(p2+q2)/(2q2)V2
(p2+q2)/(2q2) (72)

V̇2 ≤ −K3V2
K4 (73)

Where
K3 =

1
β2

2(p2+q2)/(2q2) (74)

And
K4 = (p2 + q2)/(2q2) (75)

Then, we can obtain:

V̇2 + K3V2
K4 ≤ 0 (76)

Hence, it can be concluded that the sliding manifold S 2 can
converge to the equilibrium point within a finite time t2 given
by:

t2 =
V2

(1−K4)(t0)
K3(1−K4)

(77)
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5. Simulation Results.

Numerical simulations for the closed-loop system were per-
formed in order to show the effectiveness of the proposed scheme.

The vehicle model parameters are shown in Table
1. The forward speed u reference is set to 2 m/s and the

depth z reference is set to 20 m.

Table 1: AUV model parameters and controller parameters de-
sign.

Source: Authors.

The simulations are performed using MATLAB software.
First, results for an ideal model (no perturbations or uncer-

tainties) are given.

Figure 2 shows the first result, the transition velocity u, and
how it reaches the reference value in a short time.

Figure 3 shows the vehicle’s depth response, reaching the
reference level with very little overshoot.

Figure 2: The actual and desired forward velocity response.

Source: Authors.

Figure 3: The actual and desired depth response .

Source: Authors.

Figure 4 shows the behavior of the remaining state vari-
ables, where it can be seen that these variables reach a steady
state and there is no instability.
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Figure 4: Statesw, θ and q responses.

Source: Authors.

Figure 5 shows the response of the obtained control laws
applied to the system.

Figure 5: Control laws responses.

Source: Authors.

In order to evaluate the robustness and performance of the
designed control scheme, disturbances are set to ZH = 0.3sin(t)
and MP= 0.2cos(1.5t). Moreover, the system parameters are
changed, a 20% variations from the nominal values are sup-
posed.

Figure 6 illustrates how the z-depth reaches the reference
with satisfactory performance despite the perturbations and un-
certainties in the parameters. Again, the responses of the re-
maining state variables are shown in Figure 7, demonstrating
that the proposed control scheme is resilient to disturbances and
limited uncertainties. The responses obtained from the applied
control laws are shown in Figure 8, where it can be clearly ob-
served that their magnitudes remain consistent with those ob-
tained in the absence of disturbances.

Figure 6: The actual and desired depth response in presence of
disturbances and parameters uncertainties.

Source: Authors.

Figure 7: States w, θ and q responses in presence of distur-
bances and parameters uncertainties.

Source: Authors.

Conclusions.

In this paper, a novel terminal sliding mode control-based
funnel control scheme using nonlinear observer for trajectory
tracking of the underwater vehicle system is proposed.

This controller aims to make the AUV move up and down
along a planned path. Additionally, the vehicles forward speed
is also controlled. The proposed depth control can be used to
reject disturbance because the behavior of an AUV is affected
by unknown disturbance forces and moments. According to
the simulation outcomes, the suggested control methods suc-
cessfully tackle the problem of AUV trajectory tracking during
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Figure 8: Control law responses in presence of disturbances and
parameters uncertainties.

Source: Authors.

depth motion. Additionally, some simulation studies are shown
to prove that these control schemes can handle disturbances and
uncertainties within their limits.
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