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This study proposes a Model Reference Adaptive Control (MRAC) approach based on multilayer per-
ceptron (MLP) neural networks to control the depth of a REMUS Autonomous Underwater Vehicle
(AUV) during navigation in the presence of range challenges, including hydrodynamic forces and mod-
elling uncertainties. Therefore, Model Reference Adaptive Control (MRAC) is the appropriate con-
troller for this task. The primary objective of this paper was to ensure adaptive control by using the
hyperstability concept and applied it to the linear vertical REMUS AUV model. Furthermore, a new
approach was introduced: the neural network model reference adaptive control (NNMRAC), which is
a combination of the classic MRAC control with a multilayer perceptron neural network (MLPNN),
resulting in enhance the performance and adaptability of the controller. In addition, stability analysis of
the new approach is achieved using a Lyapunov candidate function.
The effectiveness and feasibility of both adaptive control strategies on vertical AUV motion were eval-
uated through a comparative analysis conducted using MATLAB/Simulink. This analysis provides
valuable information regarding the advantages and limitations of each approach, which can help inform
decisions regarding control techniques for regulating the depth of underwater vehicles.
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1. Introduction.

Recently, Autonomous Underwater Vehicles (AUVs) played
an important role in deployment in highly dangerous missions
that have never been possible before for naval systems, such
as petroleum industries for the detection of oil wells, and in
the military field, particularly in intelligence gathering, surveil-
lance, and reconnaissance.

The oceanographic solutions are mostly the guidance and
control of these AUVs in the oceanic environment in the pres-
ence of many challenges[1] ,such as variations in hydrodynamic
parameters and disturbances like ocean waves and currents that
occur during the maneuver of an autonomous underwater ve-
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hicle (AUV). Therefore, the development of control must be
adaptive and robust to address these challenges.

Many researchers concentrated their interests on the devel-
opment of several proper control techniques for controlling the
motion of underwater robotic vehicles, such as linear law con-
trol. In this study [2], a trajectory control of an underwater
glider is proposed using an LQR optimal control to improve
the glider’s robustness to disturbances and uncertainties. This
proposed controller is applied to the linearized glider model.

For studies that use the nonlinear control approach, a high-
order sliding mode control was developed in [3] to improve
controller performance by limiting the chattering phenomena.
With the implementation of this HOSMC in the AUV H160
nonlinear diving model, the simulation result illustrated the ef-
fectiveness of the HOSMC compared with the classic sliding
mode control.

A nonlinear state feedback H∞ control algorithm is sug-
gested in [1] ,This controller has been developed by solving
the HJI equation to control the depth and yaw angle in the div-
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ing and steering planes. In [4],a hybrid control using adaptive
backstepping terminal sliding mode control for AUV trajectory
tracking the stability was analyzed using Lyapunov theory. the
feasibility and effectiveness of this control approach were veri-
fied using a simulation and an experimental test.

The study conducted in [5], offline pitch angle dynamics
identification was done due to the limitations of the uncertainty
based on the least squares algorithm. Besides that, an online
cascade tracking control was applied for the depth and pitch an-
gle of an AUV REMUS. In[6] ,a theoretical and experimental
study was proposed and applied to the path following control
of an AUV, in which in the first place, a model-free adaptive
control MFAC was proposed and developed, and then an event-
triggered mechanism was introduced to enhance the controller
performance. The paper in [7]proposed a system control called
PFM (Potential Field Methods) that guarantees obstacle avoid-
ance and navigation to detect and track cables and pipelines.
Besides that, a comparative study is conducted to compare the
proposed algorithm with another approach to the same mission.
An experimental study is carried out in [8] Bayesian visual
tracking for inspection of undersea power and telecommunica-
tions via AUV for the inspection of cables is set for more than
10,000 frames to test the cable tracking solution proposed.

For the control laws that use AI, Robust diving motion con-
trol of an AUV using the adaptive neuro-fuzzy sliding mode
technique is developed in [9]. The sliding mode control give a
fast response time with a minimum error, and the adaptive law
is used for the determination of the sliding surface coefficient.
The neural network is employed in this research to estimate the
nonlinear system dynamics and disturbances, and fuzzy logic
is used to reduce the chattering problem caused from the slid-
ing mode . Simulation studies in [10]proposed Deep Reinforce-
ment Learning based on deep policy gradient for low-level Vec-
tored Thruster AUV Control The RL input data is collected by
onboard sensors. In [11], a semi-globally stable neural network
was designed to control the diving motion of an AUV. The adap-
tation laws of the unstructured uncertainties and the update laws
of the network weight are achieved via the Lyapunov-based
method.

Based on research and a literature review, it appears that a
combination of control laws and AI provides efficient trajectory
tracking and control of AUV, despite the previously mentioned
challenges.

The main objective of this paper is to control the diving
plane of an AUV. To achieve this, an MRAC based on hyper-
stability is used, which is inspired by previous research on the
lateral motion of aircraft[12]. To create a closed-loop controller
whose parameters can be updated to modify the system’s re-
sponse, the control system was further enhanced through the
combination of a neural network, specifically an MLP, to im-
prove overall performance and efficiency against noise and un-
certainties .Previous research has successfully employed an RBF
neural network to enhance the tracking accuracy of a quadro-
tor UAV when parameters are modified [13]. However, in this
study, we aim to use an MLP neural network for enhanced per-
formance.

This paper is organized as follows. Section 2 describes

the mathematical modeling of the REMUS AUV in the verti-
cal plane, which is described and linearized. In Section 3, an
MRAC controller based on the hyperstability concept is pro-
posed and developed to control the depth of the REMUS AUV.
Furthermore, an MLP neural network is incorporated into the
MRAC for enhancement using the neural network, and then the
Lyapunov candidate function is used to analyze the stability of
the new controller. The simulation results and a comparison of
both approaches are presented in Section 4, and the conclusion
is provided in Section 5.

2. Mathematical Modelling.

The dynamics of AUV involves six - degrees - of - free-
dom equations of motion associated with coupled and nonlin-
ear terms. The nonlinear terms are generally hydro- dynamic
damping, added mass coefficients along with environmental dis-
turbances. The AUV body frame with respect to NED (North-
East-Down) frame is shown in Figure 1.

Figure 1: General AUV Structure with Reference Frame.

Source: [1].

The nonlinear equation of the vehicle can denote as follow
[14][15]: η̇ = J (η) ν

Mν̇ +C (ν) ν + D (ν) ν + g (η) = Γ
(1)

Where: η =
[
x y z Φ θ ψ

] T indicates the vector of the posi-
tion and orientation in.

The NED frame ν =
[
u v w p q r

] T represent the transla-
tion and rotation velocity of the vehicle in the Body frame.

J (η) The transformation Matrix between the body frame
and NED frame, M the inertial and the added mass matrix, C (ν)
the rigid body and the added mass Coriolis and centripetal ma-
trix, D (ν) hydrodynamic drag matrix, g (η) restoring forces and
moment vector and for Γ represent the control input vector.

The initial step to develop a pure linear depth plane model
is to assumed that the forward speed u to be constant and by
setting the velocity v , p , r.

The nonlinear equations of motion in vertical plane are [17]:
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(m − Zẇ) ẇ −
(
mxg + Zq̇

)
q̇ − Zww −

(
mU + Zq

)
q−

(W − B) cos (θ) − mZgq2 = Zδsδs

mZgu̇ −
(
mxg + Mẇ

)
ẇ +
(
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)
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Mww +
(
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)
q(

xgW − xBB
)

cos (θ) −
(
ZgW − ZBB

)
sin (θ) = Mδsδs

ż = −usin (θ) + wcos (θ)
θ̇ = q

(2)

using the Maclaurin expansion of the trigonometric terms:
sinθ = θ and cosθ = 1 and Zg is assumed to be smaller than
the other variables [18].

The linearized equation in formed as follow:

(m − Zẇ) ẇ −
(
mxg + Zq̇

)
q̇ − Zww

−
(
mU + Zq

)
q = Zδsδs,

−
(
mxg + Mẇ

)
ẇ +
(
Iyy − Mq̇

)
q̇ − Mww

+
(
mxgU − Mq

)
q − Mθθ = Mδsδs

ż = −Uθ + w
θ̇ = q

(3)

Those equations can be expressed in state space model:
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)
0 0

−
(
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)
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)
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W
q
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θ

 +


Zδs

Mδs

0
0

 δs

(4)

Where: w linear velocity and q angular velocity z represent
the depth and is θ pitch angle and δs the rudder angles.

3. Controller Design.

In this section the classic MRAC will be designed for the
AUV vertical motion first, then it will be combined with MLP
neural network ,and then the stability analysis will be demon-
strate for the new NNMRAC using Lyapunov candidate func-
tion.

3.1. Classic MRAC Controller.

The linear plant vertical model presents by the following
state space equation:

ẋ = Ax + Bu
y = Cx (5)

The reference model expressed by the following equation:

ẋm = Amxm + Bmum,
ym = Cmxm,

(6)

Where this system has the same state and input, output as
the vertical plant model of the AUV (Am , Bm , Cm have respec-
tively the same dimension as A, B, C) and um is the reference
vector [12].

The structure of direct Model Reference Adaptive Control
is show in Figure 2.

Figure 2: Structure of direct MRAC for an AUV.

Source: Authors.

The error vector between the reference model and the AUV
model:

xe = xm − x
ẋe = ẋm − ẋ (7)

Replacing (5) and (6) in (7), we obtain:

ẋe = Amxe + (Am − A) x + Bmum − Bu (8)

Using Erzerberger conditions:

Am − A = BBo (Am − A) (9)

Bm = BBoBm (10)

Where: Bo is the pseudo inverse left Bo = (BT B)−1BT

By substituting (9) and (10) in (8), the later will be written:

ẋe = Amxe − B((−Bo(Am − A))x − BoBmum + u) (11)

From (11) let:

ϕ = ((−Bo(Am − A))x − BoBmum + u (12)

So that:

ẋe = Amxe − Bϕ
ye = Cexe

(13)

The corresponding non-linear closed-loop system presented
in Figure.3 is used to apply the hyperstability theory and Popov’s
criterion (Popov 1973) to explore the absolute stability of (13).
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Figure 3: Closed-loop of hyper-stable system.

Source: Authors.

ϕ is generated by a necessarily non-linear function or ye this
constitutes the adaptive block.

The system is hyper-stable if Am, B, Ce is a hyperstable
block [18]:

CeAm + AT
mCe = −Q, Q > 0 (14)

Moreover, Popov’s criterion is satisfied:∫ t1

t0
ye (t) ϕ (t)T dt ≥ −γ2 (15)

The adaptive controller is proposed as:

u = Kxx + Kuum (16)

Replacing the equation (16) and (12) in Popov’s inequality
(15):

∫ t1
t0 [((Kx − Bo(Am − A))x + (Ku − BoBm)um)]T

ye(t)dt ≥ −γ2 (17)

The solution that met the hyperstability requirement for Kx

and Ku is:

(Kx − Bo(Am − A))T
= α(xye

T )2N+1 (18)

(Ku − BoBm)T = β(umye
T )2N+1 (19)

Where: α and β are two strictly matrices, if N = 0 then
Kx and Ku will be as follow:

Kx = Bo(Am − A) + αT xT ye (20)

Ku = BoBm + β
T um

T ye (21)

3.2. MLP Neural Network.

MLP NN is consists of an input layer, a hidden layer, and an
output layer. Each layer has numbers of neurons and each neu-
ron in each layer is connected to every neuron of the subsequent
layer. The structure of MLP is show in Figure 4.

Figure 4: MLP neural network structure.

Source: Authors.

The network input vector x The output of the output last
hidden (l) neurons as follow [19]:

zl
k = hl(wl

k zl−1(x) + bl
k) (22)

Where l represent the number of network layers w is the
weight matrix, b is bias vector ,and h is the activation function
it can be a sigmoid function(logsig), a hyperbolic tangent acti-
vation function (tanh),or linear function(purelin).

The output of the controller is presented by the following
equation:

u(x, h) =
l+1∑
k=1

wl+1
k zl

k + bl+1
k (23)

The neural network used in this paper has 3 input x = [y, ye, um]
the output of AUV, the error between the output of the reference
model and the output of AUV, The reference signal. [20]for the
output represent the control signal (rudder angle).

Levenberg Marquardt algorithm was used for the training
of the network, the preps of training is to minimize the sum of
square error energy function is E = 1

2 [ym − y]2 [21].
The structure of the MRAC controller combined with MLP

neural network show in Figure 5:

Figure 5: Block diagram of MRAC combined with MLP NN.

Source: Authors.
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3.3. Stability Analysis of MLP Neural Network MRAC.

In this subsection, stability analysis will be done for the
case with MLP neural network is employed to control the AUV
depth, using Lyapunov function.

The MRAC MLP neural network can be write as [22]:

u = wT h(x) + ε(x) (24)

Where: ε(x) is the neural network learning error.
The error dynamic in the MLPMRAC is represent as follow:

ẋe = Amxe − B wT h(x) − Bε(x) (25)

Where: w̃ Is the weight derivation w̃(t) = w−w∗

Theorem:
Consider that the learning law is given as;

ẇ(t) = −Γ h(x)xT
e PB (26)

Where: Γ Diagonal positive definite matrices Γ > 0 and
Γ = diag(Γi)

P Is the positive define solution excite to the Lyapunov
equation

PAm + AT
mP = −Q, Q > 0

Proof:
Let the Lyapunov candidate function [23]:

V(xe, w̃) =
1
2

xT
e Pxe +

1
2

(w̃TΓ−1w̃) (27)

Where: the Γ diagonal positive definite matrices define above,
to prof that the s stable it necessary to satisfied the Lyapunov
stability condition theorem by the derivation of V along the sys-
tem solution.

The Lyapunov candidate function can be upper bounded by
[24]

1
2
λ (P) ∥xe∥

2 +
1
2
λ
(
Γ−1
)
∥w̃∥2 ≤ V (xe, w̃) ≤

1
2
λ (P) ∥xe∥

2 +
1
2
λ
(
Γ−1
)
∥w̃∥2

(28)

The λ and λ is the minimum and maximum Eigen value
operator.

The time derivation of V along the error dynamic:

V̇(xe, w̃) =
1
2

xT
e Pẋe +

1
2

(w̃TΓ−1w̃) (29)

Substituting (25) into (29) the derivation of Lyapunov can-
didate function is:

V̇ (xe, w̃)= −xT
e PAmxe−xT

e PBw̃T h (x)−xT
e PBε (x)+w̃TΓ−1 ˙̃w

V̇(xe, w̃)= −
1
2

xT
e Qxe−tr(w̃T h(x)xT

e PB) − xT
e PBε(x) + w̃TΓ−1 ˙̃w

(30)
Using the weight learning law (26), the above equation will

be as follows:

V̇(xe, w̃) = − 1
2 xT

e Qxe − tr(w̃T h(x)xTe PB) − xT
e PBε(x)

+tr(w̃T h(x)xT
e PB)

V̇ (xe, w̃)= − 1
2 xT

e Qxe −xT
e PBε (x) (31)

The derivation of the Lyapunov can be upper bounded by:

V̇ (xe, w̃)≤− 1
2λmin (Q) ∥xe∥

2−xT
e ∥PB∥ ∥ε (x)∥ (32)

Let d1= ∥PB∥, and the sup ∥ε (x)∥ ≤ε.
Using the bound variable in above expression the Lyapunov

derivation is write as follow:

V̇ (xe, w̃)≤− 1
2λmin (Q) ∥xe∥

2− ∥xe∥ d1ε (33)

The set ξ outside in which V̇ (xe, w̃)≤0 [24].

ξ=
{
∥xe∥ ≥

d2
λmin(Q)

}
(34)

Let d2= 2d1ε.
The outside set ξ defines the range which the Lyapunov con-

dition assure the stability ,it signifies that as long as the error
∥xe∥ is large enough then the term d2

λmin(Q) , then the dynamics
error and the neural network weight w̃ guaranteed the stability.

4. Simulation and Results.

The reference model of the AUV is choosing according to
specific objectives were 2.46% overshoot and 1.68 second rise
time.

By using those parameters, the matrices of the reference
model chowing by the following state space representation:

ẋm = Amxm + Bmum

Will equal to:

Am =


−0.097 −0.0059 0.16 −0.98
−0.93 −2.15 −1.13 0.13

0 1 0 0
20.21 −300.36 −1.24 −300.75



Bm =


0.001
2.06

0
0.9714


The reference signal um is as step signal whose amplitude is

2.
The REMUS AUV parameters are illustrated in Table 1

[16].
The following part shows and demonstrates the result of

classic MRAC using hyperstability critic and MRAC enhanced
with MLP neural network to control the depth of AUV REMUS.



F.Z. Kadri et al. / Journal of Maritime Research Vol XXII. No. I (2025) 146–154 151

Table 1: REMUS AUV parameters.

Source: [16].

Figure 6 shows the simulation result for depth tracking the
output of the reference model using classic MRAC and MRAC
combined with MLP NN.

From the signal, the depth stabilized in the required value
in 6 s in both controllers but it appears that the classic MRAC
has a small overflow compared with the MRACMLP controller
that provided efficient tracking of the reference signal with high
accuracy and speed.

Indeed, the control surface of the MRAC controller is un-
saturated until 6 s, which means that the depth is stabilized,
according to the Figure 7.

Figure 6: Depth control with classic MRAC and MRACMLP.

Source: Authors.

Figure 7: Control output with classic MRAC.

Source: Authors.

The Figure 8 below shows control output of depth tracking
using the reference model with MLP as the replacement for the
adaptive control law and adaptive controller.

Figure 8: Control output with MRAC combined with MLP NN.

Source: Authors.

This next part, a noise signal was added in the both classic
MRAC and MRAC combined with MLP NN to evaluate them
against the noise.

The noise signal is given as sin function whose amplitude is
3.5 degree and frequency 0.4 rad/s.

Figure 9: Depth control with classic MRAC and MRACMLP
in noise presence.

Source: Authors.
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Figure 10: Control output with classic MRAC in noise pres-
ence.

Source: Authors.

Figure 11: Control output with MRAC combined with MLPNN
in noise presence.

Source: Authors.

The Figure 9 above illustrates the consequences of adding a
noise signal to the MRAC controller based on hyperstability ap-
proach and MRAC enhanced with MLP NN. It can be observed
that there is a divergence between the tracking of the actual
depth and the reference in the classic MRAC compared with
the controller without adding noise. It notices that the MRAC
combined with MLP NN has favorable result compared to the
classic MRAC controller against uncertainties.

From Figure 10 and 11 the output controller, we may ob-
serve that the control surface is unsaturated in classic MRAC,
contrary to the proposed MRAC approach control surface is
roughly saturated which means that the depth is stabilized.

As part of the effectiveness analysis for both MRAC and
MRAC combined with MLPNN controllers against parameter
uncertainties, it is suggested to increase the hydrodynamic pa-
rameters by 30% of their value. The Figure below illustrate the
reaction of the classic MRAC and the MRAC combined with
MLPNN.

Figure 12: Depth control with classic MRAC and MRACMLP-
With uncertainties.

Source: Authors.

Figure 13: Control output with classic MRAC with uncertain-
ties.

Source: Authors.

Figure 14: Control output with MRAC combined with MLP
NN with uncertainties.

Source: Authors.

Figure 12 illustrates that the MRAC combined with MLPNN
provide an efficient reference tracking compared with the clas-
sic MRAC in the presence of parameter uncertainties; beside
that the classic MRAC provide an increase in overshot than
MRAC without uncertainties.

It’s observed from Figure 13 that the control output of the
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classic MRAC hasn’t change compared with Figure 7, that’s
mean that the uncertainties hasn’t any reject on the control in-
put.

Conclusions.

The general idea in this paper focuses on proposing a refer-
ence model controller for depth tracking of an AUV REMUS.
Initially, the approach involved, use MRAC based on the hy-
perstability concept in a linear vertical AUV model. However,
in order to improve the performance and address uncertainties
and noise, the adaptive control law and the adaptive controller
were substituted with an MLP neural network, Then the stabil-
ity analysis for the new control approach it been demonstrated
using Lyapunov candidate function , the neural network train-
ing is performed using MATLAB.

Through simulations, it has been demonstrated that this en-
hanced MRAC controller, incorporating an MLP NN, is more
suitable for handling uncertainties and noise. This expansion
highlights the significance of using an MLP NN in enhancing
the control system for depth tracking of the AUV REMUS.
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